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ABSTRACT 
Given a large corpus of HTML-based emails (or websites, posters, 
documents) collected from the web, how can we train a model capa-
ble of learning from such rich heterogeneous data for HTML-based 
style recommendation tasks such as recommending useful design 
styles or suggesting alternative HTML designs? To address this 
new learning task, we frst decompose each HTML document in 
the corpus into a sequence of smaller HTML fragments where each 
fragment may consist of a set of HTML entities such as buttons, im-

ages, textual content (titles, paragraphs) and stylistic entities such 
as background-style, font-style, button-style, among others. From 
these HTML fragments, we then derive a single large heterogeneous 
hypergraph that captures the higher-order dependencies between 
HTML fragments and entities in such fragments, both within the 
same HTML document as well as across the HTML documents in the 
corpus. We then formulate this new HTML style recommendation 
task as a hypergraph representation learning problem and propose 
an approach to solve it. Our approach is able to learn efective low-
dimensional representations of the higher-order fragments that 
consist of sets of heterogeneous entities as well as low-dimensional 
representations of the individual entities themselves. We demon-

strate the efectiveness of the approach across several design style 
recommendation tasks. To the best of our knowledge, this work is 
the frst to develop an ML-based model for the task of HTML-based 
email style recommendation. 

CCS CONCEPTS 
• Computing methodologies → Artifcial intelligence; Ma-
chine learning; • Information systems → Data mining. 
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Figure 1: Our approach is trained on a large corpus of HTML 
documents, that is, marketing emails as shown in (A). Every 
HTML document is then decomposed into HTML fragments 
and a set of entities are extracted from each (B). 

1 INTRODUCTION 
Designing HTML-based email marketing campaigns, posters, 
or other web-based marketing material is typically very time-

consuming, requiring a lot of manual efort, and therefore very 
costly. Some email authoring tools in the market (e.g., Mailchimp [2], 
ActiveCampaign [1], Sendinblue [4], Moosend [3], etc.) attempt to 
help marketers create email campaigns more efciently by provid-
ing drag-and-drop email editors. However, designers still need to 
manually select the design components (e.g., buttons, texts, images) 
and customize the design style of each design component. These 
tools also provide an easy start to HTML-based email creation with 
a variety of pre-designed email templates, but the choice can be 
limited and usually fail to align with brand-specifc design styles. 

To address these problems, we develop an ML-based approach 
that learns to recommend high quality design styles by leverag-
ing a large corpus of HTML-based marketing emails. For a few 
examples of the HTML documents used for training our model, 
see Figure 1A. More specifcally, given a large corpus of HTML 
documents (emails, websites [8]), our approach decomposes each 
of these into a sequence of high-level HTML fragments; see Fig-
ure 1B for an example of a fragment. Next, we decompose each 
fragment into a set of style and design elements such as button, 
text, and background style, among many others as summarized in 
Table 1. We encode the fragments as hyperedges in a large hetero-
geneous hypergraph where each hyperedge is a set of entities of 
diferent types. Most importantly, there is often overlap between 
the diferent hyperedges, and based on this intuition, we develop a 
hypergraph neural network framework that learns a model from 
the hypergraph that captures the similarity between the diferent 
HTML fragments, and the higher-order relationships between the 
individual style and design elements of the fragments (hyperedges). 
Since the individual entities are often in more than a single HTML 
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fragment (e.g., font or button-style), we must learn a mechanism 
that enables us to “contextualize" them for any arbitrary HTML 
fragment, which can be one that the entity participates in already, 
that is, from the training corpus, or a new HTML fragment design 
that we may want to recommend to the user. For this, we learn both 
individual embeddings of the entities (nodes) along with an embed-

ding for each HTML fragment (hyperedge). Most importantly, our 
learning-based approach can naturally be used to derive scores for 
entire HTML designs or fragments. The inferred scores naturally 
induce a ranking of the designs and we can then recommend the 
top-k most efective ones to the user. Our approach is able to make 
such complex recommendations since it encodes the entire frag-
ment along with its style and the design elements as a hyperedge 
where each element is represented as a node and the set of them as 
a hyperedge. Thus, our approach can recommend entire fragments 
by simply solving a hyperedge ranking task. It is straightforward 
to see that such fragments do not need to be present in the training 
set, and thus our approach is naturally inductive as it can be used 
to infer the quality of any HTML fragment. 

The key contributions of this work are as follows: 

• Problem Formulation: We formulate the HTML document 
style recommendation task as a hypergraph learning problem 
and apply our model to perform style recommendation. 

• Approach: We propose an ML-based approach for style recom-

mendation. To the best of our knowledge, this work is the frst 
to develop an ML-based model for email style recommendation. 

• Efectiveness: The experiments demonstrate the utility of the 
proposed approach for design style recommendation tasks. 

• Benchmark Data: We derived a heterogeneous hypergraph 
from a large corpus of HTML documents representing marketing 
emails and release the benchmark dataset for others to use. 

2 APPROACH 

2.1 HTML Email Document Corpus 
We frst collected a large-scale HTML document corpus from Re-
ally Good Emails (https://reallygoodemails.com/), and then 
extract the HTML fragments from each email document in the cor-
pus (Figure 1B). Such fragments may consist of buttons, background-
style, text, images, and so on. Words and images are extracted, 
but not used. There are 7 unique node types, 24,614 hyperedges 
(fragments) from 949 HTML documents (emails). See Table 1 for a 
summary of all such entities and their statistics. To enable others 
to investigate this important task and further advance the state-of-
the-art, we make our curated benchmark dataset accessible at: 

https://doi.org/10.6084/m9.figshare.21266253 

This curated dataset can be used for benchmark comparisons, as 
well as for training new models for these new HTML style recom-

mendation tasks, which have applications in designing efective 
websites, posters, and emails (for better marketing). 

2.2 Hypergraph Extraction 
Given a large corpus of HTML documents (i.e., promotional market-

ing emails), we derive a heterogeneous hypergraph from the corpus 
by frst decomposing each HTML email into a set of fragments 
as shown in Figure 1B. Now, for every fragment, we decompose 

…
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button
style

fragment
e1

e5

e2

e3

e4

e6

Figure 2: Given a corpus of HTML documents, we derive a 
large heterogeneous hypergraph that succinctly encodes the 
dependencies between the various sets of entities. Node color 
encodes entity type, e.g., � represents a button-style. 

it further into smaller fne-grained entities such as buttons and 
background style. These entities are included as nodes in the hy-
pergraph and the set of all entities extracted from the fragment 
are encoded as a hyperedge as shown in Figure 2. Hence, every 
hyperedge in the heterogeneous hypergraph represents a fragment 
from some HTML document. To capture the spatial relationship 
present between fragments in an HTML document, we also in-
clude a node for each fragment along with an edge connecting each 
fragment to the fragment immediately below or beside it. Hence, 
this captures the sequence of such fragments in the larger email. 
Notice that hyperedges in this hypergraph are heterogeneous in 
that they consist of a set of heterogeneous nodes of various types 
as shown in Table 1. Most importantly, the entities of a fragment 
(hyperedge) are not unique to the specifc fragment, and can be con-
nected to other fragments (hyperedges) as shown in Figure 2. Each 
fragment representing a hyperedge in Figure 2 may contain multi-

ple overlapping nodes. Notably, we see that two HTML fragments 
represented as hyperedges �1 and �2 in Figure 2 contain buttons 
with the same style. This overlap in button-style often implies other 
stylistic similarities between the two fragments. 

2.3 Model 
We now describe the learning-based model for HTML design style 
recommendation. 

Preliminaries. Let � = (� , �) denote a hypergraph where � = 
{�1, . . . , �� } are the � = |� | vertices and � = {�1, . . . , �� } ⊆ 2� 

is 
the set of � = |� | hyperedges. Hence, a hyperedge � ∈ � is a set 
of vertices � = {�1, . . . , �� } such that ∀�� ∈ �, �� ∈ � . Furthermore, 
hyperedges can be of any arbitrary size and are not restricted to 
a specifc size, thus, �� , � � ∈ �, then |�� | < |� � | may hold. Let H 

Table 1: Statistics and properties of the HTML document 
corpus and the heterogeneous hypergraph derived from it. 
Note |� | = # nodes of a given type, Δ denotes max hyperedge 
degree; �avg and �

med are the mean/median degree. 

Node Type |� | Δ �avg �
med 

buton-style 2361 21 7.14 6 
text-style 14678 1548 173.42 6 
background & font color 2798 72 10.46 4 
background style 811 73 20.96 8 
word 31761 6664 382.77 22 
image 7682 200 7.29 1 
fragment 24614 235 27.84 16 
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Table 2: Results for Button Style Recommendation. 

HR@K nDCG@K 

Model @1 @10 @25 @50 @1 @10 @25 @50 

Random 0.000 ± 0.00 0.000 ± 0.00 0.018 ± 0.00 0.027 ± 0.00 0.000 ± 0.00 0.000 ± 0.00 0.004 ± 0.00 0.006 ± 0.00 
Pop. 0.000 ± 0.00 0.000 ± 0.00 0.009 ± 0.00 0.009 ± 0.00 0.000 ± 0.00 0.002 ± 0.00 0.003 ± 0.00 0.005 ± 0.00 
HyperGCN 0.008 ± 0.01 0.011 ± 0.00 0.043 ± 0.02 0.066 ± 0.03 0.008 ± 0.01 0.009 ± 0.00 0.017 ± 0.01 0.021 ± 0.01 

Our Approach 0.243 ± 0.05 0.477 ± 0.03 0.536 ± 0.06 0.594 ± 0.05 0.243 ± 0.05 0.354 ± 0.04 0.368 ± 0.04 0.379 ± 0.04 

Table 3: Results for Background Style Recommendation. 

HR@K nDCG@K 

Model @1 @10 @25 @50 @1 @10 @25 @50 

Random 0.000 ± 0.00 0.000 ± 0.00 0.000 ± 0.00 0.074 ± 0.00 0.000 ± 0.00 0.000 ± 0.00 0.000 ± 0.00 0.013 ± 0.00 
Pop. 0.000 ± 0.00 0.000 ± 0.00 0.000 ± 0.00 0.000 ± 0.00 0.001 ± 0.00 0.006 ± 0.00 0.010 ± 0.00 0.016 ± 0.00 
HyperGCN 0.000 ± 0.00 0.031 ± 0.04 0.061 ± 0.06 0.147 ± 0.14 0.000 ± 0.00 0.018 ± 0.02 0.025 ± 0.03 0.041 ± 0.04 

Our Approach 0.181 ± 0.11 0.457 ± 0.14 0.552 ± 0.10 0.741 ± 0.08 0.181 ± 0.11 0.308 ± 0.11 0.333 ± 0.11 0.369 ± 0.10 

button
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e4

alternative 
button
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𝑓( )
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Figure 3: Our approach naturally handles the inductive set-
ting where we have new unseen fragments (set of styles and 
design elements). This is important for our recommenda-
tion tasks since we need to score alternative HTML fragment 
designs for recommendation. In (a) we have the original frag-
ment whereas (b) is an alternative design using diferent 
button styles. See text for discussion. 

denote the � × � hyper-incidence matrix of the hypergraph � 
such that ��� = 1 if vertex �� ∈ � is in hyperedge �� ∈ � and 
��� = 0 otherwise. Intuitively, H ∈ R� ×� 

connects the nodes 
to their hyperedges and vice-versa. The hyperedge degree vector 
d� ∈ R� 

is d� = H⊤1� where 1� is the � -dimensional vector of 
all ones. Then the degree of a hyperedge � � ∈ � is simply �� = 

� Í 
� �� � . We defne the diagonal hyperedge node degree matrix as 

D = diag(H1� ) where D is a � × � diagonal matrix with the Í 
hyperedge degree �� = � �� � of each vertex �� on the diagonal �
and 1� = 1 1 · · · 1 

�⊤ 
is the all ones vector. Furthermore, we 

defne the diagonal hyperedge degree matrix D� = diag(H⊤1� ) = 
diag(�

1 
� , �

2 
� , Í. . . , ��� ) where D� is a � × � matrix with hyperedge 

degree �� = � �� � of each hyperedge � � ∈ � on the diagonal. 
� 

Hyperedge-Dependent Convolutions. Intuitively, we desire 
the individual entities to be embedded close together in the �-
dimensional space if they are highly connected and occur in many 
of the same hyperedges, which are also close to one another. More 

formally, � � 
Z(�+1) = � (D−1HP� D� 

−1H⊤D−1Z(� ) + D−1HY(� ) )W(� ) 
(1) � � 

Y(�+1) = � (D−1H⊤PD−1HD−1Y(� )+(HD−1)⊤Z(�+1) )W(� ) 
(2)� � � � 

where Eq. 1-2 defnes the hypergraph convolutional layers of our 
model, resulting in the updated node Z(�+1) and hyperedge embed-

dings Y(�+1) at layer � +1. In Eq. 2, the random walk hyperedge tran-
sition matrix P� = (D−1H)⊤HD−1 ∈ R� ×� 

is used whereas Eq. 2� 
uses the random walk node transition matrix P = HD−1 (D−1H)⊤∈� 
R� ×� 

. Importantly, the node embeddings at each layer are up-
dated using the hyperedge embedding matrix D−1HY(� ) 

. Similarly, 
the hyperedge embeddings at each layer are updated using the 
(HD−1)⊤Z(�+1) node embedding matrix. The process repeats until � 
convergence. Note that the initial node Z(1) and hyperedge features 
Y(1) are derived as: 

Z(1) = � (HH⊤ − D) (3) 

Y(1) = � (H⊤H − D� ) (4) 

where � is a function that maps HH⊤ − D and H⊤H − D� to a 
low-dimensional embedding. In this work, we used SVD as in [7]. 

2.4 Training 
The training objective for our approach is formally presented in this 
section. Let � = {�1, �2, . . .} denote the set of known hyperedges 
in the hypergraph � where every hyperedge �� = {�1, . . . , �� } ∈ � 
represents a set of nodes that can be of any arbitrary size � = |�� |. 
This is important since HTML fragments that represent hyperedges 
in our heterogeneous hypergraph can be varying sizes, e.g., sim-

ple HTML fragments may only have a few entities whereas more 
complex HTML fragment designs may consist of a large number of 
entities. Hence, for any two hyperedges �� , �� 

′ ∈ �, then |�� | ≠ |�� ′ |
may hold. Further, let � be a set of sampled vertex sets from the 
set 2� − � of unknown hyperedges. Given an arbitrary hyperedge 
� ∈ � ∪ � , we defne a hyperedge score function � as: 

� : � = {x1, . . . , x� } → � (5) 

Hence, � maps the set of �-dimensional embedding vectors 
{x1, . . . , x� } of the hyperedge � to a score � (� = {x1, . . . , x� }) or 
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simply � (�). In this work, we defne � (�) to be the mean cosine 
similarity between all pairs of nodes in the hyperedge � ∈ �. More 
formally, ∑ 

� (�) = 
1 

x⊤ 
(6)� x� � 

�, � ∈� 
s.t. � > � 

|� | ( |� |−1)
where � = is the number of unique node pairs �, � in the 

2 
hyperedge � . Intuitively, the hyperedge score � (�) is largest when 
all nodes in the set � = {�1, �2, . . .} have similar embeddings. Then, 
the hyperedge prediction loss function is: ∑ 

1 � � � � 
ℒ = − �� log � (� (�� )) + (1 − �� ) log 1 − � (� (�� )) |� ∪ � | 

� ∈�∪� 

where �� = 1 if � ∈ � and otherwise �� = 0 if � ∈ � . Further, 
1

let � (� (�� )) = 
1+exp[−� (�� ) ] where � (�� ) = � (� (�� )) is the proba-

bility of hyperedge �� existing in the hypergraph � . Furthermore, 
our approach naturally extends to the inductive learning setting 
where we can use it to recommend new unseen HTML fragments 
representing sets of entities (Figure 3). In particular, given a new 
unseen fragment, we can leverage the hyperedge score function 
as shown in Figure 3 to derive a score for this new unseen frag-
ment, which indicates how well these entities go together to form a 
well-designed HTML fragment. Intuitively, if the embeddings from 
each entity in the fragment are similar, then the function � will 
score this fragment higher than a fragment with dissimilar entities 
where the notion of similarity is learned from the large corpus of 
professionally designed HTML emails/documents. 

3 EXPERIMENTS 
In this section, we use the proposed approach for style recommen-

dation tasks. To quantitatively evaluate the efectiveness of our 
approach for style recommendation tasks, we hold out 20% of links 
in the hypergraph that occur between a fragment and a style entity 
(e.g., button-style) to use as ground-truth for quantitative evalu-
ation. Then HNN is trained using the other 80% links. Given the 
learned embeddings from our approach, we derive a score between 
HTML fragment � and every button-style � ∈ �� as follows: 

w� = � (z� , z� ), ∀� ∈ �� (7) � �
where � is a score function (i.e., cosine) and w� = w�1 · · · w� |�� |
are the scores. We then sort the scores w� and recommend top-K 
styles with largest weight. To quantitatively evaluate the recom-

mendations, we use HR@K and nDCG@K where � = {1, 10, 25, 50}. 
We repeat the above for each of the held-out links in the test set 
and report the mean of the evaluation metrics. 

Table 4: Hyperedge Prediction Results. 

AUC MAP 

GCN 0.707 ± 0.03 0.622 ± 0.03 
GraphSAGE 0.769 ± 0.02 0.788 ± 0.03 
HyperGCN 0.467 ± 0.03 0.478 ± 0.04 
HGNN 0.802 ± 0.03 0.731 ± 0.03 
Our Approach 0.846 ± 0.02 0.810 ± 0.03 

User-selected Fragment Recommendations

Figure 4: HTML Fragment Recommendations 

Since this is the frst work to study this problem, there are no 
immediate baselines for comparison. Nevertheless, we compare 
our approach to several common-sense baseline methods including 
random that recommends a style or design element uniformly at 
random among the set of possibilities, popularity (pop) that rec-
ommends the most frequent style, and HyperGCN [9]. The results 
showing the efectiveness of the various approaches for recom-

mending the top button-styles are provided in Table 2. Notably, 
our approach performs signifcantly better than the other models 
across both HR@K and nDCG@K for all � ∈ {1, 10, 25, 50}. In 
many instances, the simple random and popularity baseline are 
completely inefective with HR@K and nDCG@K of 0 when � is 
small (top-1 or 10). In contrast, our approach correctly recovers the 
ground-truth button-style 24% of the time in the top-1 (Table 2). 
Results for recommending useful background-styles are reported 
in Table 3. Our approach performs best, achieving better HR and 
nDCG across all � . It is important to note that results at smaller � 
are more important, and these are precisely the situations where 
the other models completely fail, that is, for top-1 all approaches 
have a HR of 0 indicating they are never able to correctly recover 
the ground-truth background-style that was held-out. 

To further evaluate the efectiveness of our approach, we also 
leverage it for prediction of entire HTML fragments of an email in 
Table 4. Recall an HTML fragment consists of a set of entities such as 
buttons, text, background-style, among others. Therefore, this task 
is equivalent to predicting hyperedges of arbitrary size. For training, 
we select 80% of the observed hyperedges (HTML fragments) and 
use the remaining 20% for testing. The same amount of negative 
hyperedges � ∈ � are generated by sampling a hyperedge � ∈ � 

and corrupting it by replacing |� 
2

| 
nodes of � with |� 

2

| 
other nodes 

sampled uniformly from � − � . For this HTML fragment prediction 
task, we evaluate our approach against HyperGCN [9], HGNN [5], 
GraphSAGE [10], and GCN [6]. Results are reported in Table 4. 
Overall, our approach achieves the best predictive performance 
over all other models. This demonstrates the efectiveness of our 
approach for HTML fragment prediction that gives rise to many 
important practical applications such as for facilitating the design 
of web sites and marketing emails. Finally, we also provide a few 
example recommendations in Figure 4. 
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