
A ML-based Approach for HTML-based Style Recommendation
Ryan Aponte Ryan A. Rossi Shunan Guo Jane Hofswell Nedim Lipka

CMU Adobe Research Adobe Research Adobe Research Adobe Research
USA USA USA USA USA

Chang Xiao Gromit Chan Eunyee Koh Nesreen Ahmed
Adobe Research Adobe Research Adobe Research Intel Labs

USA USA USA USA

ABSTRACT
Given a large corpus of HTML-based emails (or websites, posters,
documents) collected from the web, how can we train a model capa-
ble of learning from such rich heterogeneous data for HTML-based
style recommendation tasks such as recommending useful design
styles or suggesting alternative HTML designs? To address this
new learning task, we frst decompose each HTML document in
the corpus into a sequence of smaller HTML fragments where each
fragment may consist of a set of HTML entities such as buttons, im-

ages, textual content (titles, paragraphs) and stylistic entities such
as background-style, font-style, button-style, among others. From
these HTML fragments, we then derive a single large heterogeneous
hypergraph that captures the higher-order dependencies between
HTML fragments and entities in such fragments, both within the
same HTML document as well as across the HTML documents in the
corpus. We then formulate this new HTML style recommendation
task as a hypergraph representation learning problem and propose
an approach to solve it. Our approach is able to learn efective low-
dimensional representations of the higher-order fragments that
consist of sets of heterogeneous entities as well as low-dimensional
representations of the individual entities themselves. We demon-

strate the efectiveness of the approach across several design style
recommendation tasks. To the best of our knowledge, this work is
the frst to develop an ML-based model for the task of HTML-based
email style recommendation.

CCS CONCEPTS
• Computing methodologies → Artifcial intelligence; Ma-
chine learning; • Information systems → Data mining.

KEYWORDS
Design style recommendation, graph neural networks, hypergraphs

ACM Reference Format:
Ryan Aponte, Ryan A. Rossi, Shunan Guo, Jane Hofswell, Nedim Lipka,
Chang Xiao, Gromit Chan, Eunyee Koh, and Nesreen Ahmed. 2023. A ML-

based Approach for HTML-based Style Recommendation. In Companion
Proceedings of the ACM Web Conference 2023 (WWW ’23 Companion), April
30–May 04, 2023, Austin, TX, USA. ACM, New York, NY, USA, 5 pages.
https://doi.org/10.1145/3543873.3587300

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for proft or commercial advantage and that copies bear this notice and the full citation
on the frst page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
WWW ’23 Companion, April 30–May 04, 2023, Austin, TX, USA
© 2023 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9419-2/23/04.
https://doi.org/10.1145/3543873.3587300

Figure 1: Our approach is trained on a large corpus of HTML
documents, that is, marketing emails as shown in (A). Every
HTML document is then decomposed into HTML fragments
and a set of entities are extracted from each (B).

1 INTRODUCTION
Designing HTML-based email marketing campaigns, posters,
or other web-based marketing material is typically very time-

consuming, requiring a lot of manual efort, and therefore very
costly. Some email authoring tools in the market (e.g., Mailchimp [2],
ActiveCampaign [1], Sendinblue [4], Moosend [3], etc.) attempt to
help marketers create email campaigns more efciently by provid-
ing drag-and-drop email editors. However, designers still need to
manually select the design components (e.g., buttons, texts, images)
and customize the design style of each design component. These
tools also provide an easy start to HTML-based email creation with
a variety of pre-designed email templates, but the choice can be
limited and usually fail to align with brand-specifc design styles.

To address these problems, we develop an ML-based approach
that learns to recommend high quality design styles by leverag-
ing a large corpus of HTML-based marketing emails. For a few
examples of the HTML documents used for training our model,
see Figure 1A. More specifcally, given a large corpus of HTML
documents (emails, websites [8]), our approach decomposes each
of these into a sequence of high-level HTML fragments; see Fig-
ure 1B for an example of a fragment. Next, we decompose each
fragment into a set of style and design elements such as button,
text, and background style, among many others as summarized in
Table 1. We encode the fragments as hyperedges in a large hetero-
geneous hypergraph where each hyperedge is a set of entities of
diferent types. Most importantly, there is often overlap between
the diferent hyperedges, and based on this intuition, we develop a
hypergraph neural network framework that learns a model from
the hypergraph that captures the similarity between the diferent
HTML fragments, and the higher-order relationships between the
individual style and design elements of the fragments (hyperedges).
Since the individual entities are often in more than a single HTML

9

https://doi.org/10.1145/3543873.3587300
https://doi.org/10.1145/3543873.3587300
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3543873.3587300&domain=pdf&date_stamp=2023-04-30

WWW ’23 Companion, April 30–May 04, 2023, Austin, TX, USA R. Aponte et al.

fragment (e.g., font or button-style), we must learn a mechanism
that enables us to “contextualize" them for any arbitrary HTML
fragment, which can be one that the entity participates in already,
that is, from the training corpus, or a new HTML fragment design
that we may want to recommend to the user. For this, we learn both
individual embeddings of the entities (nodes) along with an embed-

ding for each HTML fragment (hyperedge). Most importantly, our
learning-based approach can naturally be used to derive scores for
entire HTML designs or fragments. The inferred scores naturally
induce a ranking of the designs and we can then recommend the
top-k most efective ones to the user. Our approach is able to make
such complex recommendations since it encodes the entire frag-
ment along with its style and the design elements as a hyperedge
where each element is represented as a node and the set of them as
a hyperedge. Thus, our approach can recommend entire fragments
by simply solving a hyperedge ranking task. It is straightforward
to see that such fragments do not need to be present in the training
set, and thus our approach is naturally inductive as it can be used
to infer the quality of any HTML fragment.

The key contributions of this work are as follows:

• Problem Formulation: We formulate the HTML document
style recommendation task as a hypergraph learning problem
and apply our model to perform style recommendation.

• Approach: We propose an ML-based approach for style recom-

mendation. To the best of our knowledge, this work is the frst
to develop an ML-based model for email style recommendation.

• Efectiveness: The experiments demonstrate the utility of the
proposed approach for design style recommendation tasks.

• Benchmark Data: We derived a heterogeneous hypergraph
from a large corpus of HTML documents representing marketing
emails and release the benchmark dataset for others to use.

2 APPROACH

2.1 HTML Email Document Corpus
We frst collected a large-scale HTML document corpus from Re-
ally Good Emails (https://reallygoodemails.com/), and then
extract the HTML fragments from each email document in the cor-
pus (Figure 1B). Such fragments may consist of buttons, background-
style, text, images, and so on. Words and images are extracted,
but not used. There are 7 unique node types, 24,614 hyperedges
(fragments) from 949 HTML documents (emails). See Table 1 for a
summary of all such entities and their statistics. To enable others
to investigate this important task and further advance the state-of-
the-art, we make our curated benchmark dataset accessible at:

https://doi.org/10.6084/m9.figshare.21266253

This curated dataset can be used for benchmark comparisons, as
well as for training new models for these new HTML style recom-

mendation tasks, which have applications in designing efective
websites, posters, and emails (for better marketing).

2.2 Hypergraph Extraction
Given a large corpus of HTML documents (i.e., promotional market-

ing emails), we derive a heterogeneous hypergraph from the corpus
by frst decomposing each HTML email into a set of fragments
as shown in Figure 1B. Now, for every fragment, we decompose

…

large corpus
of emails
(training)

button
style

fragment
e1

e5

e2

e3

e4

e6

Figure 2: Given a corpus of HTML documents, we derive a
large heterogeneous hypergraph that succinctly encodes the
dependencies between the various sets of entities. Node color
encodes entity type, e.g., � represents a button-style.

it further into smaller fne-grained entities such as buttons and
background style. These entities are included as nodes in the hy-
pergraph and the set of all entities extracted from the fragment
are encoded as a hyperedge as shown in Figure 2. Hence, every
hyperedge in the heterogeneous hypergraph represents a fragment
from some HTML document. To capture the spatial relationship
present between fragments in an HTML document, we also in-
clude a node for each fragment along with an edge connecting each
fragment to the fragment immediately below or beside it. Hence,
this captures the sequence of such fragments in the larger email.
Notice that hyperedges in this hypergraph are heterogeneous in
that they consist of a set of heterogeneous nodes of various types
as shown in Table 1. Most importantly, the entities of a fragment
(hyperedge) are not unique to the specifc fragment, and can be con-
nected to other fragments (hyperedges) as shown in Figure 2. Each
fragment representing a hyperedge in Figure 2 may contain multi-

ple overlapping nodes. Notably, we see that two HTML fragments
represented as hyperedges �1 and �2 in Figure 2 contain buttons
with the same style. This overlap in button-style often implies other
stylistic similarities between the two fragments.

2.3 Model
We now describe the learning-based model for HTML design style
recommendation.

Preliminaries. Let � = (� , �) denote a hypergraph where � =
{�1, . . . , �� } are the � = |� | vertices and � = {�1, . . . , �� } ⊆ 2�

is
the set of � = |� | hyperedges. Hence, a hyperedge � ∈ � is a set
of vertices � = {�1, . . . , �� } such that ∀�� ∈ �, �� ∈ � . Furthermore,
hyperedges can be of any arbitrary size and are not restricted to
a specifc size, thus, �� , � � ∈ �, then |�� | < |� � | may hold. Let H

Table 1: Statistics and properties of the HTML document
corpus and the heterogeneous hypergraph derived from it.
Note |� | = # nodes of a given type, Δ denotes max hyperedge
degree; �avg and �

med are the mean/median degree.

Node Type |� | Δ �avg �
med

buton-style 2361 21 7.14 6
text-style 14678 1548 173.42 6
background & font color 2798 72 10.46 4
background style 811 73 20.96 8
word 31761 6664 382.77 22
image 7682 200 7.29 1
fragment 24614 235 27.84 16

10

https://reallygoodemails.com/
https://doi.org/10.6084/m9.figshare.21266253

A ML-based Approach for HTML-based Style Recommendation WWW ’23 Companion, April 30–May 04, 2023, Austin, TX, USA

Table 2: Results for Button Style Recommendation.

HR@K nDCG@K

Model @1 @10 @25 @50 @1 @10 @25 @50

Random 0.000 ± 0.00 0.000 ± 0.00 0.018 ± 0.00 0.027 ± 0.00 0.000 ± 0.00 0.000 ± 0.00 0.004 ± 0.00 0.006 ± 0.00
Pop. 0.000 ± 0.00 0.000 ± 0.00 0.009 ± 0.00 0.009 ± 0.00 0.000 ± 0.00 0.002 ± 0.00 0.003 ± 0.00 0.005 ± 0.00
HyperGCN 0.008 ± 0.01 0.011 ± 0.00 0.043 ± 0.02 0.066 ± 0.03 0.008 ± 0.01 0.009 ± 0.00 0.017 ± 0.01 0.021 ± 0.01

Our Approach 0.243 ± 0.05 0.477 ± 0.03 0.536 ± 0.06 0.594 ± 0.05 0.243 ± 0.05 0.354 ± 0.04 0.368 ± 0.04 0.379 ± 0.04

Table 3: Results for Background Style Recommendation.

HR@K nDCG@K

Model @1 @10 @25 @50 @1 @10 @25 @50

Random 0.000 ± 0.00 0.000 ± 0.00 0.000 ± 0.00 0.074 ± 0.00 0.000 ± 0.00 0.000 ± 0.00 0.000 ± 0.00 0.013 ± 0.00
Pop. 0.000 ± 0.00 0.000 ± 0.00 0.000 ± 0.00 0.000 ± 0.00 0.001 ± 0.00 0.006 ± 0.00 0.010 ± 0.00 0.016 ± 0.00
HyperGCN 0.000 ± 0.00 0.031 ± 0.04 0.061 ± 0.06 0.147 ± 0.14 0.000 ± 0.00 0.018 ± 0.02 0.025 ± 0.03 0.041 ± 0.04

Our Approach 0.181 ± 0.11 0.457 ± 0.14 0.552 ± 0.10 0.741 ± 0.08 0.181 ± 0.11 0.308 ± 0.11 0.333 ± 0.11 0.369 ± 0.10

button
style

fragment

e1

e3

e2
e4

e1

e3

𝑒!"

e4

alternative
button
style

𝑓()

(a) (b)

Figure 3: Our approach naturally handles the inductive set-
ting where we have new unseen fragments (set of styles and
design elements). This is important for our recommenda-
tion tasks since we need to score alternative HTML fragment
designs for recommendation. In (a) we have the original frag-
ment whereas (b) is an alternative design using diferent
button styles. See text for discussion.

denote the � × � hyper-incidence matrix of the hypergraph �
such that ��� = 1 if vertex �� ∈ � is in hyperedge �� ∈ � and
��� = 0 otherwise. Intuitively, H ∈ R� ×�

connects the nodes
to their hyperedges and vice-versa. The hyperedge degree vector
d� ∈ R�

is d� = H⊤1� where 1� is the � -dimensional vector of
all ones. Then the degree of a hyperedge � � ∈ � is simply �� =

� Í
� �� � . We defne the diagonal hyperedge node degree matrix as

D = diag(H1�) where D is a � × � diagonal matrix with the Í
hyperedge degree �� = � �� � of each vertex �� on the diagonal �
and 1� = 1 1 · · · 1

�⊤
is the all ones vector. Furthermore, we

defne the diagonal hyperedge degree matrix D� = diag(H⊤1�) =
diag(�

1
� , �

2
� , Í. . . , ���) where D� is a � × � matrix with hyperedge

degree �� = � �� � of each hyperedge � � ∈ � on the diagonal.
�

Hyperedge-Dependent Convolutions. Intuitively, we desire
the individual entities to be embedded close together in the �-
dimensional space if they are highly connected and occur in many
of the same hyperedges, which are also close to one another. More

formally, � �
Z(�+1) = � (D−1HP� D�

−1H⊤D−1Z(�) + D−1HY(�))W(�)
(1) � �

Y(�+1) = � (D−1H⊤PD−1HD−1Y(�)+(HD−1)⊤Z(�+1))W(�)
(2)� � � �

where Eq. 1-2 defnes the hypergraph convolutional layers of our
model, resulting in the updated node Z(�+1) and hyperedge embed-

dings Y(�+1) at layer � +1. In Eq. 2, the random walk hyperedge tran-
sition matrix P� = (D−1H)⊤HD−1 ∈ R� ×�

is used whereas Eq. 2�
uses the random walk node transition matrix P = HD−1 (D−1H)⊤∈�
R� ×�

. Importantly, the node embeddings at each layer are up-
dated using the hyperedge embedding matrix D−1HY(�)

. Similarly,
the hyperedge embeddings at each layer are updated using the
(HD−1)⊤Z(�+1) node embedding matrix. The process repeats until �
convergence. Note that the initial node Z(1) and hyperedge features
Y(1) are derived as:

Z(1) = � (HH⊤ − D) (3)

Y(1) = � (H⊤H − D�) (4)

where � is a function that maps HH⊤ − D and H⊤H − D� to a
low-dimensional embedding. In this work, we used SVD as in [7].

2.4 Training
The training objective for our approach is formally presented in this
section. Let � = {�1, �2, . . .} denote the set of known hyperedges
in the hypergraph � where every hyperedge �� = {�1, . . . , �� } ∈ �
represents a set of nodes that can be of any arbitrary size � = |�� |.
This is important since HTML fragments that represent hyperedges
in our heterogeneous hypergraph can be varying sizes, e.g., sim-

ple HTML fragments may only have a few entities whereas more
complex HTML fragment designs may consist of a large number of
entities. Hence, for any two hyperedges �� , ��

′ ∈ �, then |�� | ≠ |�� ′ |
may hold. Further, let � be a set of sampled vertex sets from the
set 2� − � of unknown hyperedges. Given an arbitrary hyperedge
� ∈ � ∪ � , we defne a hyperedge score function � as:

� : � = {x1, . . . , x� } → � (5)

Hence, � maps the set of �-dimensional embedding vectors
{x1, . . . , x� } of the hyperedge � to a score � (� = {x1, . . . , x� }) or

11

WWW ’23 Companion, April 30–May 04, 2023, Austin, TX, USA R. Aponte et al.

simply � (�). In this work, we defne � (�) to be the mean cosine
similarity between all pairs of nodes in the hyperedge � ∈ �. More
formally, ∑

� (�) =
1

x⊤
(6)� x� �

�, � ∈�
s.t. � > �

|� | (|� |−1)
where � = is the number of unique node pairs �, � in the

2
hyperedge � . Intuitively, the hyperedge score � (�) is largest when
all nodes in the set � = {�1, �2, . . .} have similar embeddings. Then,
the hyperedge prediction loss function is: ∑

1 � � � �
ℒ = − �� log � (� (��)) + (1 − ��) log 1 − � (� (��)) |� ∪ � |

� ∈�∪�

where �� = 1 if � ∈ � and otherwise �� = 0 if � ∈ � . Further,
1

let � (� (��)) =
1+exp[−� (��)] where � (��) = � (� (��)) is the proba-

bility of hyperedge �� existing in the hypergraph � . Furthermore,
our approach naturally extends to the inductive learning setting
where we can use it to recommend new unseen HTML fragments
representing sets of entities (Figure 3). In particular, given a new
unseen fragment, we can leverage the hyperedge score function
as shown in Figure 3 to derive a score for this new unseen frag-
ment, which indicates how well these entities go together to form a
well-designed HTML fragment. Intuitively, if the embeddings from
each entity in the fragment are similar, then the function � will
score this fragment higher than a fragment with dissimilar entities
where the notion of similarity is learned from the large corpus of
professionally designed HTML emails/documents.

3 EXPERIMENTS
In this section, we use the proposed approach for style recommen-

dation tasks. To quantitatively evaluate the efectiveness of our
approach for style recommendation tasks, we hold out 20% of links
in the hypergraph that occur between a fragment and a style entity
(e.g., button-style) to use as ground-truth for quantitative evalu-
ation. Then HNN is trained using the other 80% links. Given the
learned embeddings from our approach, we derive a score between
HTML fragment � and every button-style � ∈ �� as follows:

w� = � (z� , z�), ∀� ∈ �� (7) � �
where � is a score function (i.e., cosine) and w� = w�1 · · · w� |�� |
are the scores. We then sort the scores w� and recommend top-K
styles with largest weight. To quantitatively evaluate the recom-

mendations, we use HR@K and nDCG@K where � = {1, 10, 25, 50}.
We repeat the above for each of the held-out links in the test set
and report the mean of the evaluation metrics.

Table 4: Hyperedge Prediction Results.

AUC MAP

GCN 0.707 ± 0.03 0.622 ± 0.03
GraphSAGE 0.769 ± 0.02 0.788 ± 0.03
HyperGCN 0.467 ± 0.03 0.478 ± 0.04
HGNN 0.802 ± 0.03 0.731 ± 0.03
Our Approach 0.846 ± 0.02 0.810 ± 0.03

User-selected Fragment Recommendations

Figure 4: HTML Fragment Recommendations

Since this is the frst work to study this problem, there are no
immediate baselines for comparison. Nevertheless, we compare
our approach to several common-sense baseline methods including
random that recommends a style or design element uniformly at
random among the set of possibilities, popularity (pop) that rec-
ommends the most frequent style, and HyperGCN [9]. The results
showing the efectiveness of the various approaches for recom-

mending the top button-styles are provided in Table 2. Notably,
our approach performs signifcantly better than the other models
across both HR@K and nDCG@K for all � ∈ {1, 10, 25, 50}. In
many instances, the simple random and popularity baseline are
completely inefective with HR@K and nDCG@K of 0 when � is
small (top-1 or 10). In contrast, our approach correctly recovers the
ground-truth button-style 24% of the time in the top-1 (Table 2).
Results for recommending useful background-styles are reported
in Table 3. Our approach performs best, achieving better HR and
nDCG across all � . It is important to note that results at smaller �
are more important, and these are precisely the situations where
the other models completely fail, that is, for top-1 all approaches
have a HR of 0 indicating they are never able to correctly recover
the ground-truth background-style that was held-out.

To further evaluate the efectiveness of our approach, we also
leverage it for prediction of entire HTML fragments of an email in
Table 4. Recall an HTML fragment consists of a set of entities such as
buttons, text, background-style, among others. Therefore, this task
is equivalent to predicting hyperedges of arbitrary size. For training,
we select 80% of the observed hyperedges (HTML fragments) and
use the remaining 20% for testing. The same amount of negative
hyperedges � ∈ � are generated by sampling a hyperedge � ∈ �

and corrupting it by replacing |�
2

|
nodes of � with |�

2

|
other nodes

sampled uniformly from � − � . For this HTML fragment prediction
task, we evaluate our approach against HyperGCN [9], HGNN [5],
GraphSAGE [10], and GCN [6]. Results are reported in Table 4.
Overall, our approach achieves the best predictive performance
over all other models. This demonstrates the efectiveness of our
approach for HTML fragment prediction that gives rise to many
important practical applications such as for facilitating the design
of web sites and marketing emails. Finally, we also provide a few
example recommendations in Figure 4.

REFERENCES
[1] 2022. ActiveCampaign - Email Marketing, Automation, and CRM. https:

//www.activecampaign.com
[2] 2022. Mailchimp: Marketing smarts for big ideas. https://mailchimp.com/
[3] 2022. Moosend - Email Marketing Automation Platform for Thriving Businesses.

https://moosend.com/
[4] 2022. Sendinblue - All Your Digital Marketing Tools in One Place. https:

//www.sendinblue.com

12

https://www.activecampaign.com
https://www.activecampaign.com
https://mailchimp.com/
https://moosend.com/
https://www.sendinblue.com
https://www.sendinblue.com

A ML-based Approach for HTML-based Style Recommendation

[5] Yifan Feng, Haoxuan You, Zizhao Zhang, Rongrong Ji, and Yue Gao. 2019. Hy-
pergraph neural networks. In AAAI, Vol. 33. 3558–3565.

[6] Thomas N Kipf and Max Welling. 2016. Semi-supervised classifcation with graph
convolutional networks. arXiv:1609.02907 (2016).

[7] Fayokemi Ojo, Ryan A Rossi, Jane Hofswell, Shunan Guo, Fan Du, Sungchul
Kim, Chang Xiao, and Eunyee Koh. 2022. VisGNN: Personalized Visualization
Recommendation via Graph Neural Networks. In WWW. 2810–2818.

[8] Qifan Wang, Yi Fang, Anirudh Ravula, Fuli Feng, Xiaojun Quan, and Dongfang
Liu. 2022. WebFormer: The Web-Page Transformer for Structure Information

WWW ’23 Companion, April 30–May 04, 2023, Austin, TX, USA

Extraction. In WWW. 3124–3133.
[9] Naganand Yadati, Madhav Nimishakavi, Prateek Yadav, Vikram Nitin, Anand

Louis, and Partha Talukdar. 2019. HyperGCN: A New Method For Training Graph
Convolutional Networks on Hypergraphs. In NeurIPS. 1509–1520.

[10] Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L Hamilton,
and Jure Leskovec. 2018. Graph convolutional neural networks for web-scale
recommender systems. In KDD. 974–983.

13

	Abstract
	1 Introduction
	2 Approach
	2.1 HTML Email Document Corpus
	2.2 Hypergraph Extraction
	2.3 Model
	2.4 Training

	3 Experiments
	References

