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ABSTRACT
Detecting structures and components in business emails is vital for
editor software to convert third-party emails so that designers can
edit themwithout needing to know howHTMLworks. In a produc-
tion environment, the challenge is to make the model easy to be
understood and maintained by different stakeholders. We propose
detecting email components with a collection of constraints writ-
ten in Answer Set Programming (ASP). Hard constraints can detect
well-defined components like email layouts, and soft constraints
can incorporate ML to detect custom components like buttons and
titles in emails. Using constraints, developers can apply their do-
main knowledge to the model and express them in a concrete, ex-
tensible, and deterministic form. We demonstrate the effectiveness
with a prototype and evaluations from real datasets.
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1 INTRODUCTION
Nowadays, we receive many business emails from different com-
panies for purposes related to purchases and news. These emails

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of thisworkmust be honored.
For all other uses, contact the owner/author(s).
CHI EA ’23, April 23–28, 2023, Hamburg, Germany
© 2023 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9422-2/23/04.
https://doi.org/10.1145/3544549.3585714

are often designed by editors that follow different HTML format-
ting guidelines [1–6]. Although the rendered emails can be eas-
ily shared among different browsers and mailboxes (Figure 1(B)),
they cannot be edited by other editors due to different formats
to construct the HTMLs. Most of them contain predefined com-
ponents, such as rows, columns, text, images, and buttons (Sec-
tion 2.1) so that designers can create and edit emails without cod-
ing the HTML.Therefore, to facilitate the usage of email editors on
third-party emails, we need to detect these components to wrap
them with the editor-specific HTMLs (Figure 1(C)).

Developing a model in an industrial setting, we encountered a
human-centered challenge. To integrate the detection and conver-
sion of third-party emails as a feature in a commercial editor, a
team of researchers, engineers, and product managers need to col-
laborate together. Since different stakeholders have different back-
grounds, expertise, and requirements on the model, we discovered
that a “collaborative” model development needs to be accessible,
extensible, and scalable. Accessible means everyone should under-
stand how the model works. Extensible means a developer can add
rationale to the detection easily. And scalable means it can lever-
age ML to improve accuracy on many emails.

As a result, we propose an email component detection model
using Answer Set Programming (ASP) [8]. We represents HTML
emails as a set of logical facts and detects the components with
hard and soft constraints over these facts. As we will show in Sec-
tion 3.1, these constraints are concise and human-readable sen-
tences. Thus, we view them as a human-readable model with de-
terministic and probabilistic objectives. Hard constraints must be
satisfied (e.g., rows and columns cannot overlap), whereas soft con-
straints express a preference (e.g., an image HTML tag looks like
an image component). Our contribution is not to propose a more
accurate model to detect email components. Instead, we propose
ASP to motivate an expressive and extensible email component de-
tection model development. We believe it could potentially apply
to other use cases that involve HTML [16–19].

In general, ASP has an extensive use in various applications,
ranging from GUI layout [14, 15], bioinformatics [12, 13], robot-
ics [10], information integration [7, 20], to scheduling [22]. Prior
research has also broadly explored the use of ASP in classifica-
tion problems. In this work, we apply ASP for detecting the roles
of HTML components in business emails as human interpretable
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Figure 1: Goal of Email Detection: Given a HTML email (A), we detect the components (e.g., rows, titles, buttons) to inject
formatted HTML (C) and make it editable in an email designer with the same display (B). Example format in (C) includes
putting each text and button into separate <table> with class names row and col.

logic-based AI [11]. Our contributions focus on the readability and
expressiveness of the framework that allows hand tuned constraints.

2 BACKGROUND
2.1 Email Components
A business email editor usually enables the design through “drag-
and-drop” functionalities. Based on email editors from Adobe [1],
Bee [2], Chamaileon [3],Mailchimp [4], Salesforce [5] and Stripo [6],
we summarize two types of components provided to design HTML
emails without needing to code:
• Layout Components: To place the text and images into desired

regions in the email, the user first need to specify the “grid”. To
do so, the editors often provide a “row” component to segment
the vertical regions and a “column” component to segment the
horizontal regions.

• Design Components: In each of the cells in the grid, the user can
drag a specific email design.The typical options could be summa-
rized as follows:Text: for inserting titles or paragraphs;Multime-
dia: for inserting images or videos; Button: for inserting buttons
to external websites; Divider : for inserting page breaks in the
email; Social: for inserting links to social media websites, and;
Offer : for inserting personalized links to product websites.
Originally, to identify these components in an imported emails,

each email editor will assign related <class> names to the related
HTML in the email (Figure 1(C)). Therefore, it is challenging to
identify these structures from an email not designed by its native
editor since different editors have different names and elements
assignments. In addition, the same layout and visual designs could
have different HTML specifications. For example, a row with three
columns can be achieved by either a <table> or <div> tag, and a
button can be designed with either a <button> or <a> tag. As long
as some minimal HTML rules are obeyed, different HTML emails
can provide the same visuals.

2.2 Model Development Process
To deploy a detection model in a commercial email editing plat-
form, our team consists of researchers, developers, and product
managers.The development is a holistics and collaborative process
and heavily human-in-the-loop. To begin with, we started with
a small set of business emails. The whole team brainstormed the
characteristics of the components to verbally describe them. Then,
we translated them into ASP rules and tested the emails by in-
specting the results in the email editor. After several iterations, the
productmanager introducedmore emails from different customers.
Since different customers had different ways to create emails, we
brainstormed again for any issues raised from the new data and im-
plemented new rules to address them. Thus, ASP played an useful
role due to the following reasons:

• Easy mapping between rules syntax and human descriptions. Dur-
ing the discussion, we often had ideas like “large fonts must be
titles” or “company A likes to put links into images”. As we will
show later (Section 3.1), these comments could be easily mapped
to concise one-line syntax in ASP.

• Version Control. Since each line of the ASP often represent one
rule, we can easily see different versions using file comparison
tools to compare the performances between two versions ofmod-
els from different considerations.

3 ASP EMAIL COMPONENT DETECTION
3.1 Answer Set Programming
Readers might refer to the literature for a more detailed review
of ASP [8]. We only describe the functionality of ASP that was
used in our work. To understand how ASP searches answers over
constraint-based problems as a modeling language, we need to un-
derstand the three building blocks of the program: atoms, literals,
and rules. Atoms are factual statements that may be true or false.
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Literals are atoms a and their negations not a. Rules are the ex-
pressions of the logic. For example, in the rule: a :- b, not c.
The definition states that a, b, and c are all atoms. Also, it justifies
that a (the so-called head) is true if all literals to the right (the so-
called body) are true if a non-negated literal b has a derivation and
the negated literal c does not have one. Noted that the negation
will result in a true condition when either the atom is true or the
atom is not declared. This is useful for detecting email elements
without complete specification of the whole feature space. For ex-
ample, consider a following rule that determines whether a HTML
is a text fragment:

fragment(text) :- hasText, not backgroundColor(white).

Suppose when we extract atoms from a HTML fragment and there
are no background colors declared, the head fragment(text)will
still be true if we can generate an atom hasText from the HTML.
The atomswith brackets are the ones that could contain variables 1,
which is useful for us to get answers from constraints and optimiza-
tion results with repeatedly defined atoms.

The next important property for ASP is that the rules do not
need a head (i.e. bodiless). For example, a rule can be stated as :-
a, b. In this case, such a rule is called integrity constraint, in which
a and b cannot be satisfied together.This is useful whenwewant to
prevent some atoms fromhappening at the same time. For example,
:- isElement, tag(tr). allows us to set the isElement flag to
false when the tag of the current HTML fragment’s tag is tr.

In addition to the constraints inside rules, the constraints can
be reached to level of multiple rules. In other words, the rules
a0, a1, … an can be aggregated as 𝑗 {a0, a1, ... an} 𝑘.: mean-
ing at least 𝑗 and at most 𝑘 atoms must be true. For example, if
we want to restrict the answer (e.g. fragment type) to one only,
we can use such a syntax 1 { fragment(F), fragmentType(F)
} 1. Also, there are other aggregation available such as #sum and
#count. For example, if a fragment has three children’s widths as
childrenWidth(1,10), childrenWidth(2,30), and
childrenWidth(1,40), we can define a rule to find out their total
width as:

totalWidth(W) :- W = #sum{ CW : childrenWidth(_,CW) }.

Noted that the underscore symbol _ implies an anonymous vari-
able so that the rule will not constraint its value.

Until this point of discussion, we might treat ASP as a neat
expression for “IF-THEN-ELSE” statements to arrive at answers
through elimination. Yet, another useful feature from ASP is the
soft constraint, which we can incur preferences when searching for
answers. Soft constraints are in the syntax of :∼ a, b. [𝑤]. The
rule is interpreted as follows: if the literals a, b are satisfied, we
will impose a penalty equal to theweight𝑤 . Across a set of soft con-
straints in a program, we look for an optimal answer set that min-
imizes the sum of weighted costs of all satisfied soft constraints.

1The variable that starts with a capital letter is a numerical variable.

3.2 Pipeline
The whole pipeline of the detection model is as follows. First, we
view the HTML email as a hierarchical DOM tree. We recursively
parse the children’s elements along the tree and see whether they
belong to the defined structures. We first detect the rows in the
email, then followed by columns, and elements at the end. The
parsing includes an extraction of ASP atoms from the HTML (Sec-
tion 3.3) and running our pre-defined rules with the atoms (Sec-
tion 3.4). Once the parsing is finished, the detected HTML frag-
ments will be extracted and fit into the templates that are recog-
nized by our own email editor.

3.3 Mapping HTML Specifications to Facts
AnHTML specification of an email fragment describes the arrange-
ments and styles of a set of web contents. The tags usually show
some characteristics of the web content, such as whether it con-
tains a website link, text, or image. Also, the whole HTML is ac-
companied by an embedded style sheet that defines the styles like
background color and positions of theweb components. Noted that
for business emails, they work as standalone files that do not need
external files such as CSS or Javascript to display the contents.

In addition, we can also extract the features of the emails in
their rendered format. By using a browser to render the HTML, we
can acquire the statistics of the appearance of the business email,
such as the width, height, and position. Also, we can format the
appearance as pixels so that we can use Computer Vision libraries
to extract colors and fonts. Together, we summarize the features
extracted from a HTML fragment in Table 1.

3.4 Detecting Email Components with
Constraints

With the defined features and facts, we now describe the rules and
constraints for different detection purposes in the pipeline. Our
goal is to have a single ASP program handling most of the routines
in the detection tasks so that we do not need to manage multiple
programs through external tools.Thus, our constraints can be cate-
gorized into three categories: (1) task and configurations, (2) email
structure detection, and; (3) email element detection.

3.4.1 Constraints for setup and configurations. The first set of con-
straints aims to define the detection tasks so that we can turn off
some rules that are not related to the current task. It is important
since some rules might affect the cost function and, consequently
the optimization results. Also, there are requirements on the re-
sults’ formats for each task. To begin with, we can define the task
constraints:

taskType(detectRows;detectColumns;detectElements).
1 {task(T): taskType(T) } 1.

By inputing a task atom to declare the task, we can control the out-
put of the ASP program. For example, if we have designed a set of
rules to determine email elements with syntax “element(button)
:- ...”, we can control the activations of these rules by associat-
ing the atom element with the atom task(detectElements):

0 {element(T): elementType(T) } 1.
:- element(_), not task(detectElements).
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Table 1: The table shows some basic extracted ASP atoms from the emails.

Source Atom’s Definition Description Usage Example

HTML Parsing tag(<string>) The tag contained in the email fragment. tag(img).
href(<string>) The domain of the website link inside the fragment. href(google).
nText(<int>) The number of texts inside the fragment. nText(10).

nParagraph(<int>) The number of text paragraph inside the fragment. nParagraph(2).

Browser Rendering size(<int>,<int>) The size (width and height) of the fragment. size(100,50).
pos(<int>,<int>) The position (x and y) of the fragment. pos(0,0).

childrenSize(<ID>,<int>,<int>) The i-th child element’s size in the fragment. childrenSize(1,50,20).
childrenPos(<ID>,<int>,<int>) The i-th child element’s position in the fragment. childrenPos(1,0,0).

Pixel-level Extraction bgColor(<int>,<int>,<int>) The RGB values of the fragment’s background color. bgColor(255,255,255).
fontSize(<int>) The font size of the text in the fragment. fontSize(12).

The first rule tells us the number of element heads in the answer
set is either one or none, and the second rule tells us any atoms
related to element should not appear if task(detectElements) is
not declared, which implies all optimization rules and costs related
to element will not be realized.

In addition, for email conversion, we also declare some HTML-
specific conditions that violate the detection tasks. Recall our goal
is to extract anHTML fragment and copy it inside our editor-specific
structures. Such a strategy will violate the email formatting if the
fragment begins with a tag that requires its parent tag to be a spe-
cific one. For example, a <th> fragment must have a <tr> tag as
its parent. To address the violation, we can declare a invalidTag
head when the tag falls into a set of definitions:

invalidTag :- tag(tr;th;...).
:- element(_), invalidTag.

Notice that the second rule does not need to concatenate to the
rule related to the similar one with task. Such an extensible repre-
sentation allows us to read the constraints in separate lines, which
is also useful for version control when multiple developers work
on the same Git repository.

3.4.2 Constraints to Detect Rows and Columns. To detect struc-
tures in the HTML email, we can divide the tasks into the detection
of rows followed by the detection of columns. Both tasks follow
the same routine, and the only difference is that the row detection
tries to split the HTML fragments vertically, and the column detec-
tion tries to split them horizontally. We use row detection as the
illustration. To start with, we can treat the email structure as a set
of hierarchical rectangular partitions. The challenges are that the
row structures might exhibit at different levels in the hierarchy,
and the formulation of detecting non-overlapping row partitions
can easily turn into codes and models that are hard to interpret
among different developers.

We formulate the row detection routine into the detection of
row assignments of children nodes under the same parent HTML
node. Among the children nodes, we use ASP to optimize the rows
assignment. Afterward, we recursively replace the nodes in the as-
signment with their descending nodes if the node can be further
split into more than one row. Algorithmically, it implies the supply
of 𝑛−1more row partitions to the parent node where 𝑛 is the num-
ber of row partitions in the current node. As a result, the final row
assignment will be available on the root level.

Recall that each children’s node’s ID, size, and position are de-
fined in childrenSize and childrenPos in Table 1. We define the
atoms that represent the labels of nodes and row partitions:

children(1..CID) :- CID = #max{ID: childrenPos(ID,_,_)}.
row(1..RID) :- RID = #count{ ID: children(ID) }.

Noted that we declare a constraint related to row assignment in
the second rule above, where the number of row partitions cannot
exceed the number of children nodes. To collect the row assign-
ment, we can define an atom rowAssignment(<CID>,<RID>) to
represent the answers in the program output:

1 { rowAssignment(CID,RID): row(RID)} 1 :- children(CID).

This also provides a constraint for the program that each children
node can only belong to one row.

After the constraints related to the answers and variables are
defined, we can proceed to the constraints related to the row detec-
tion. In a “constraint” mindset, we determine the row assignment
by telling the program what could not happen for a row assignment.
Since our goal is to determine non-overlapping partitions and their
dimensions are determined by the children inside the partitions,
the two cases that the partitions will overlap are when (1) the up-
per row’s bottom Y coordinates are larger than the lower row’s top
Y coordinates, and; (2) the upper row’s bottom Y coordinates are
larger than the lower row’s bottom Y coordinates, assuming the Y
coordinates increases from top to bottom. To express these into
ASP, we can define rules that align with the reasoning below.

The following condition cannot happen:
:-

For any two different children in different rows,
rowAssignment(CID1,RID1), rowAssignment(CID2,RID2),

CID1 != CID2, RID1 != RID2,
regarding their heights and starting Y coordinates,

childrenSize(CID1,_,H1), childrenPos(CID1,_,Y1),
childrenSize(CID2,_,H2), childrenPos(CID2,_,Y2),

the upper child’s bottom Y is larger than the bottom child’s top Y.
(H1+Y1)>Y2, Y2>Y1.

< Similar syntax for the second row related constraint >
…

the upper child’s bottom Y is larger than the bottom child’s bottom Y.
(H1+Y1)>(H2+Y2), Y2>Y1.
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Figure 2: An illustration of learning weights for soft constraints using historical email fragments.

The expressiveness of ASP allows describing a constraint with
a similar ordering of atoms in the literal. With the four constraints
defined, the program arrives at a set of legitimate row partition re-
sults. To arrivewith a final answer that dividesmost vertical spaces,
we can define a head atom that records the number of row parti-
tions used and define themaximization the number of row partitions
as the objective function:

numberOfRows(N) :- N = #count{RID: rowAssignment(_,RID)}.
#maximize { N: numberOfRows(N) }.

The first rule counts the number of unique row IDs in the row as-
signment, and the second rule optimizes the row assignment that
leads to the largest number of rows defined in the head.

After the row detection of children nodes is completed, we can
prepare for the same routine for the descendants among the chil-
dren nodes. Noted that if a row has accommodated more than one
children nodes, we do not need to continue the row detection rou-
tine on these children since they already overlap with each other.
We can detect this behavior with one rule based on our current
atoms:

continue(CID) :- N = #count{I: rowAssignment(I,RID)}, rowAssignment(CID,RID),
N <= 1.

The i-th children will appear an answer continue(i) only if the
number of rowAssignment that contains the same RID as i is greater
than one.

3.4.3 Email Element Detectionwith SoftConstraints. While the row
and column detection tasks are deterministic since we understand
our goals to partition the emails, we now define a scoring mecha-
nism to map a custom email element’s characteristics into an inte-
ger representing its preference level. This mechanism allows us to
rank the email element answer without defining the scoring as a
procedure. Instead, we can use a set of soft constraints to implic-
itly define it. The weights of the constraints reveal their favor and
strengths: the sign of weight affects the favor (i.e., negativeweights
represent favor towards the characteristics and vice versa), and the
magnitudes represent the importance.

The syntax of soft constraints is similar to a bodiless rule, ex-
cept the beginning starts with :∼ instead of :-. For example, :∼
element(image), hasImage. [-3] states that defining the ele-
ment as an image component while the HTML fragment contains
an image will decrease the cost of the optimization function by

three. Therefore, we do not need to set a hard threshold to have
every HTML fragment with an image as an image component. It
is sometimes reasonable to define the fragment as something else.

To extend our ASP program to support new email components,
a developer can add soft constraints to capture the desired prefer-
ences. For example, if the email editor supports a carousel element
with multiple image containers, we can add the soft constraints to
“encourage” the choice of carousel and “discourage” the choice of
image in the answer set below.

manyImages :- numOfImages(N), N > 1.
:∼ element(carousel), manyImages. [-1]

:∼ element(image), manyImages. [1]

Noted that in this example, the rationale behind the detection
result as carousel or image are the same. Thus, the evaluation can
be treated as a multiclass regression model. Concretely, given a set
of classes 𝑌 = {𝑦1, 𝑦2, ...} (e.g. element(text), element(image),
…), a set of features derived from the HTML fragment as a feature
vector 𝑥 = {𝑥1, 𝑥2, ...} (e.g. manyImages, hasText, …), the resulting
class 𝑖 is derived as follows:

argmin
𝑖

𝑥𝑇𝑤𝑖

where 𝑤𝑖 are the weights associated with the soft constraints re-
lated to the class (e.g. -1 and 1 in the above example). The setting
of these weights can be done by an email editor and expert through
trial and error among different trade-offs. In Section 4, we will also
demonstrate how we can learn𝑤 from data.

4 USING MACHINE LEARNING TO IMPROVE
DETECTION RESULTS IN ASP

Although designers can tune the weights to improve the detection
performance on their own, the ASP model can also leverage Ma-
chine Learning to learn the weights of soft constraints from avail-
able emails in the inventory. Email fragments usually contain la-
bels that indicate their component assignments, such as having a
class called btn- or image- in their tags. Better still, we can acquire
strictly defined components from emails that are created from our
designer software. With such a resource, we can develop a Ma-
chine Learning pipeline to acquire the weights (Figure 2). We first
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Figure 3: Email designer with detection model. (A) A converter button enables the conversion of third-party email. (B) After
the conversion, the rows and columns are detected. (C) The text element is identified and allows the user to edit the content.

map the HTML fragments from the training samples individually
to atoms in ASP and then run the program to count how many fea-
tures the atoms satisfy. The counts from all the training samples
can be transformed into a 𝑖 × 𝑗 matrix 𝑋 where 𝑖 is the number of
samples, and 𝑗 is the number of features defined in our ASP. The
labels can be transformed to a vector 𝑌𝑖 . Using our soft constraint
rules defined in Section 3.4.3, the weights𝑊 can form a 𝑗×𝑘 matrix
where 𝑘 is the number of email elements available in the designer
software. With the three matrices 𝑋 ,𝑊 , and 𝑌 , we can use a mul-
ticlass logistics regression model to compute the values of weights
𝑊 ∗ through gradient descent algorithms [21].

Since the pipeline in Figure 2 demonstrates learned weights us-
ing a backpropagation approach, we can foresee that the soft con-
straints can also be extended to non-linear models like neural net-
works. The only addition rules that define the activation functions
and additional weights multiplications in the hidden layer. How-
ever, we focus on developing an expressive model for email com-
ponent detection in our work. We will leave the usage of non-
linear models in future discussions. To conclude, by integrating
the learned weights, the ASP model becomes a knowledge base
for email component definitions that combines both the designer
knowledge and empirical data.

5 DEMONSTRATION AND EVALUATION
We present the usage of our ASP model by demonstrating our de-
ployment in a real email editor platform. By showing the input
and output of the system, we demonstrate how our model is use-
ful for inspection and debugging. Then, we introduce a use case
where we are able to use learning from data to improve the perfor-
mance of distinguishing between a button and a text in the emails,
which are similar in terms of their HTML specifications. We use
publicly available emails from https://reallygoodemails.com/ for

demonstrations and experiments.We have crawled 980 emails from
the website and extracted around 3,000 fragments for Section 5.3.

5.1 Implementing ASP Model in an Email
Designer Platform

We demonstrate the new user experience enabled by our email
component detection model (Figure 3). When we import an email
from a third-party source, the interface will display in a “compati-
bility mode”, meaning the email would be only available for brows-
ing only. However, with our component detection technologies,
we could now provide a button on the interface to allow users to
convert the email into our editor’s format (Figure 3(A)). Therefore,
the conversion results in two benefits in the system. First, the rows
and columns are identified so that the user can easily drag and drop
the components in the editor (Figure 3(B)). Second, since the ele-
ments are also identified, the user can also edit the content with
native styles provided by the editor as well (Figure 3(C)).

≈
For the backend, the input and output of ASP provides an easy

interpretation for understanding and debugging. For example, a
button HTML fragment is compiled into a set of facts and con-
straintswhen the software sends the third-party email to themodel:

task(detectelement). textColor(255, 255, 255). tag(div).
tag(a). tag(span). width(148). height(28). fontSize(18).
borderWidth(4). urlLength(1). numberOfTexts(2).

Our ASP model then returns the following answer set:
fact(smallComponent). fact(hasBorder). fact(hasText).

fact(smallText). fact(lightColorText). element(button).

For the purpose of inspection and debugging, not only can the
output be obtained through element(button), but the constraints

https://reallygoodemails.com/
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Figure 4: Run time performance on 980 emails.

that are compiled and used by the ASP are also shown through the
fact-related atoms. Thus, the developer can easily understand the
logic behind a detection with short and concise statements.

The whole conversion process is also very efficient. Figure 4
shows the computation time for the 980 emails, which involves
the feature extraction, ASPmodel compilation, and transformation
of the detected email to our designer’s format. The whole process
takes below 30 seconds for most emails, which is important to pre-
vent time out in our software’s architecture.

5.2 Evaluating Layout Components on Real
Emails

While the component detection on the 980 emails is efficient, we
are also interested in understanding whether the layout compo-
nent detection works or not. We hired three freelancer with HTML
design experience from UpWork 2. We asked them to provide feed-
back by visually inspecting the email appearances before and after
the detection/conversion. We also hoped to summarize the limita-
tions of the current detection model. Overall, each of them agreed
that more than 800 emails had their layout well segmented with
little distortion. While the model could be continuously improved
throughout the development, we outlined several challenging is-
sues in the corner cases:

I. The whole email is an image. There are emails that are de-
signed mainly by image editors so that the whole email only
contains an image tag. In this case, our detection model will
only return one row and column and an image component.

II. Column first emails.Our framework assumes theHTMLfirst
segment the email by rows then columns. For emails that do
the opposite, the vertical segments will be aggregated into
one row only.

III. Highly responsive emails. Some emails are designedwith lots
of responsive components for different device resolutions.
For example, some images will appear only when shown
on mobile phones but not on desktops. The DOM tree thus
contains many “invisible” tags that could potentially break
the partition after the detection.

2https://www.upwork.com

Table 2: Detection Accuracy from the Soft Constraints.

Hand-crafted ASP Model Learned ASP Model

Text Fragment 0.249 0.875
Button Fragment 0.975 0.852

5.3 Applying Machine Learning to Detect
Similar Elements

We now demonstrate how to incorporate Machine Learning to im-
prove detection performance. To make the discussion simple, we
demonstrate how to distinguish between a button and a text frag-
ment in an HTML fragment. We acquire a sample for ML by ex-
tracting the HTML fragments that contain text- or button- as
the respectively ground truths. There are 1,982 text fragments and
1,145 button fragments as a result. We split them into 80/20 for
training/testing. We compile the facts from the ASP program and
construct a matrix similar to the 𝑋 in Figure 2 to learn a logistic
regression model. The detection accuracy (i.e., number of correct
predictions/number of total samples) for the learned model and
hand-crafted ASP model are shown in Table 2. We can see a sig-
nificant improvement in detection quality. Without knowing the
importance of each preference, the hand-crafted model seems to
have favor in identifying most fragments as buttons, which leads
to a huge sacrifice on the text components (i.e., the model just
turns everything into buttons). After adjusting the weights on the
soft constraints, we can rectify the judgment to improve the ac-
curacy. While the machine learning models participate in the im-
provement, our ASP model remains expressive and easy to under-
stand with changes to the weights only (highlighted in red):

:∼ soft(hasText), element(text). [-1] →[-4].
:∼ soft(longParagraph) ,element(text). [-1] →[-21]
:∼ soft(shortParagraph) ,element(text). [1] →[14]
:∼ soft(hasHref), element(button). [-1] →[-26].
:∼ soft(lightColorText), element(button). [-1] →[-10].
:∼ soft(smallText), element(button). [-2] →[-5].
:∼ soft(largeComponent), element(button). [2] →[2].

The learned weights also reflect the importance of each feature to
the detection result. Thus, the weights can act as a profile for de-
velopers to understand the context of email design.

6 LIMITATIONS AND FUTUREWORK
6.1 Beyond Email Component Detection
Our detection framework only works on detecting components in
business emails. However, we believe that the whole framework
can be applied to different classification tasks on HTML files. For
example, fake news detection [9] and visual designs [23] can both
benefit from our approach. The human-centered approach with
ASP allows users to incorporate their knowledge to eliminate or
quickly identify obvious cases while leveraging Machine Learn-
ing to addressmore challenging scenarios.With both deterministic
rules and probabilistic models expressed with the same syntax, hu-
mans can easily maintain a large knowledge base and incorporate
with models to achieve more interpretable and robust models in
real-life applications.

https://www.upwork.com
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6.2 Detection on Creative Content
Our email design component detection framework can be easily
adapted into other creative content and use cases, such as trans-
forming PNG designs into Photoshop formats. The only difference
is the mapping between pixels to logical facts. With today’s evolv-
ing technologies from Computer Vision, we can generate features
that could be transformed into facts in ASP to achieve similar ob-
jectives. We are interested in applying our detection approach to a
broader set of creative contents.

6.3 Constraints from a Software Engineering
Perspective

Our use of constraint programming provides easier development
and maintenance of automated email component detection tools.
We propose concise expressions to address two challenges: hard-
to-maintain codes to express conditions in a complex scenario and
hard-to-collaborate black box models. Our work provides an ex-
ample to incorporate human knowledge in an extensible way. For
example, if the email editor software decides to introduce an ad-
ditional component, the developers can add rules to accommodate
the unseen tasks.These rules lie on separate lines independently in
the program so that everyone can track the changes easily through
version control. In the future, we are interested in developing a col-
laborative platform from ASP so that developers and designers can
synchronously address a task with ASP together.

7 CONCLUSION
This paper presents an email component detection model in An-
swer Set Programming (ASP). The model consists of hard and soft
constraints to detect the layout and features in the HTML email.
We illustrate its expressiveness by presenting the implementation
as human interpretable statements. Finally, we demonstrate the
model as a production ready feature in a commercial email editor.
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