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ABSTRACT
Online marketing platforms often store millions of website visitors’

behavior as a large sparse matrix with rows as visitors and columns

as behavior. These platforms allow marketers to conduct Audience

Expansion, a technique to identify new audiences with similar be-

havior to the original target audiences. In this paper, we propose a

method to achieve interactive Audience Expansion from millions

of visitor data efficiently. Unlike other methods that undergo signif-

icant computations upon inputs, our approach provides interactive

responses when a marketer inputs the target audiences and similar-

ity measures. The idea is to apply data summarization technique on

the large visitor matrix to obtain a small set of summaries represent-

ing the similarities in the matrix. We propose efficient algorithms to

compute the data summaries on a distributed computing environ-

ment (i.e., Spark) and conduct the expansion using the summaries.

Our experiment shows that our approach (1) provides 10× more

accurate and 27× faster Audience Expansion results on real datasets

and (2) achieves a 98% speed-up compared to straightforward data

summarization implementations. We also present an interface to

apply the algorithm for real-world scenarios.
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Figure 1: Overview of Audience Expansion.

1 INTRODUCTION
The online advertising industry is driven by the ability to recom-

mend the right ads to the right audience. Marketers often seek to

target users similar to their existing users to maximize the likeli-

hood of positive responses to their ads. Audience expansion, also

called look-alike modeling, is the task of finding users that are

similar to a given set of seed users(Figure 1). The seed users can

be, for example, purchasers of a product, web subscribers, or loyal

customers. In general, the seed set is usually much smaller than

the entire set of users. An audience expansion model gives the

marketers a set of look-alike users that are highly relevant to those

seed users, often concerning their Internet activities. The identified

look-alike audiences are then targeted in ad campaigns.

Audience expansion provides marketers with a convenient and

useful tool to target their users. Yet its usability can further be

improved with interactivity. In online advertising, users are often

represented by thousands of features. However, marketers are usu-

ally interested in using only a small set of those features due to

privacy or domain expertise. Moreover, they might not know the

final chosen features, and even the seed users, until assessing with

several combinations. Interactivity, therefore, is an essential and

fundamental aspect of audience expansion. Even though various

techniques have been proposed for identifying the look-alike users

[4, 5, 21, 30, 33, 38, 42], not much work has been done on interactive
audience expansion with user defined seed sets and features.

In this paper, we only consider binary features, as continuous

features can be bucketed into multiple binary features if needed.

Each binary feature is also called a trait. Hence, audience expansion
is given a large, often very sparse, user-by-trait binary matrix R at

the preprocessing step. Each row of R corresponds to a user (also
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called visitor), and each column corresponds to a trait. At query

time, a set of rows is chosen as the seed set, and a set of columns is

chosen as relevant traits. The chosen set of traits determines how

the algorithm measures similarity among the users and determines

how the look-alike set is computed.

To preprocess the data for interactively audience expansion, the

model partitions R into multiple summaries using the minimum

description length principle. Each summary can be viewed as a

rank-1 matrix determined by a list of users and a list of traits. The

description length principle minimizes the representations of all

summaries (model description) and the extra representation needed

to exactly recover R from those summaries (correction). At query

time, each summary is restricted to the chosen traits. Then any two

summaries will bemerged if they overlap significantly by rows or by

columns. The final summary representations are used to score each

user. Specifically, a user has a high score in the model if their traits

have high Jaccard similarity with one of the summaries’ columns.

This paper makes the following key contributions:

(1) A novel binary matrix summarization method for interactive au-

dience expansion. The method uses MDL to find the best partitions

while utilizing hashing strategies to be both fast and scalable for

interactive audience expansion on large-scale online visitor data.

(2) A highly scalable parallel implementation of the approach for

the interactive audience expansion problem.

(3) Comprehensive experiments demonstrate our approach’s effec-

tiveness as it achieves a significant speed-up with accuracy compa-

rable to the state-of-the-art. This naturally enables the approach

for real-time interactive audience expansion via an interactive user

interface with visualizations.

2 RELATEDWORK
One of the important online advertisement and marketing tasks

is audience expansion (or look-alike modeling) [10, 12, 15, 31, 36].

Given a set of seed users, the goal of the audience expansion task is

to find more users (audiences) that are similar to the seed set, and

therefore useful to target a campaign around as they are likely to

eventually convert (e.g., purchase an advertised product) [30, 47].

Many recent methods have been proposed to solve this problem [4,

5, 21, 30, 33, 38, 42]. Somework uses clustering [38] including graph-

based nearest neighbor methods [5], matrix factorization [21], and

classification-based methods [4]. There has also been some work

that extracts rules/feature vectors and uses them to score [30, 33,

42]. However, none of this work can solve the interactive audience
expansion problem introduced in our paper.

Other recent work has focused on themobile marketing audience

expansion problem [50]. In that work, they propose a two-stage

approach called Hubble [50], where a model is retrained weekly

in the offline stage, and another lightweight model is trained in

the online stage after every single audience expansion request.

However, the online model for a single campaign request takes

several minutes to train, as opposed to several seconds required

by our interactive audience expansion problem. Furthermore, we

also propose a distributed implementation of our approach that is

efficient and scalable for the preprocessing step.

There has recently been some work on scalable distributed meth-

ods for look-alike modeling [29]. While there is a lot of recent work

on parallel clustering algorithms for shared-memory and distributed

architectures [3, 6, 8, 14, 17, 48], there are only a few such works

that focus on distributed methods for look-alike modeling [29].

This work focused on proposing a distributed implementation of an

existing look-alike modeling approach. In our work, we describe a

distributed implementation of our approach for interactive audience
expansion using Spark. This is mainly useful for the preprocessing

step as it is offline and doesn’t have the same interactive response

requirements of the main online interactive audience expansion

phase. There has been some recent work on interactive data analysis

and visualization [19, 22, 23]. The majority of work in this area has

focused mainly on interaction techniques and visual interfaces for

exploring data [16, 20, 27, 41] or finding the best clusters by inter-

actively tuning the parameters of a clustering algorithm [7, 26, 46].

In this work, we design fast and scalable methods for the inter-
active audience expansion problem that can naturally support the

interactivity requirements needed for such large-scale datasets.

There have also been many edge clustering approaches proposed

in the last few years on applications in visualization [11, 49], bioin-

formatics [44], network science [1] and social media [45]. Edge

clustering algorithms have been proposed for bipartite [18, 40, 45]

and general graphs [1]. Techniques have also been proposed for

different variants of the edge clustering problem, including hierar-

chical [49] and overlapping edge clustering [24, 43]. Co-clustering

of bipartite graphs representing words and documents have also

been extensively studied [13]. However, none of these works can

be used directly for the interactive audience expansion problem.

3 AUDIENCE EXPANSION OVERVIEW
In this section, we describe audience expansion and formulate the

process based on the online visitors’ traits data. First, online visitor

behavior is stored as a binary matrix R ⊆ U ×T whereU is a set of

visitors u and T is a set of user behavior t (i.e., traits). To begin the

audience expansion process, users input both (1) a subset of online

visitors s ⊆ U as target customers (seed set) and (2) a subset of user

behavior b ⊆ T . Given these inputs, the objective is to compute a

score α → [0, 1] for each visitor in the dataset that quantifies its

similarity to s based on b.
In the real life scenario, seed customers often exhibit multiple

representative behavior (e.g. profitable customers might come from

different regions). These behavior are sets of traits that appear to-

gether from the seed customers. Thus, to reflect the similarities

between the visitors and each representative behavior, each visitor

ui has a set of scores where each score αi j corresponds to a repre-

sentative behavior r j , which is a subset of relations r̂ ⊆ s ×b. Under
these settings, the score can be based on set similarity measures

such as Jaccard similarity:

αi j = Jaccard (ui ,br j ) (1)

where br j = {t ∈ T : ∃u ∈ U such that (u, t ) ∈ r j }. For each
customer ui , we can label them as an expanded target if there is at

least one score that is higher than a threshold (e.g.,max (αi, :) ≥ 0.9)

As a result, users can obtain two insights from the score of each

visitor: how similar the visitor is to a set of representative behavior

and how many seed customers contain this behavior. The higher

the score, the better the affinity the visitor is to the seed customers.



For interactive audience expansion, our challenge is to arrive

at the representative behavior r within seconds of time. Previous

methods’ computation speed often relies on the number of traits or

visitors in the dataset. We will demonstrate that by having a way

to derive representative behavior without the sizes of visitors and

traits as constraints, we can provide a magnitude of speed up with

high-quality audience expansion results (Section 5).

4 DATA STRUCTURE FOR INTERACTIVE
AUDIENCE EXPANSION

While the scoring of each visitor is straightforward and efficient

(i.e., calculating set similarity), the challenge lies in the discovery of

representative behavior from the seed customers in interactive time.

Since the similarity measure based onb is defined interactively from
the users, straightforward clustering cannot be applied to group

visitors by their similarity based on a custom set of traits. Yet,

without compressing the visitor data into a smaller representation,

it is not tangible to find the representative behavior from the seed

population interactively.

4.1 Data Summaries For Audience Expansion
To address both (1) user-defined seed population and similarity

measure and (2) interactive representative behavior discovery, our

idea is to decompose the binary matrix of visitor data into a much

smaller set of summaries. These summaries are submatrices of the

binary matrix such that in each summary matrix, the rows and

columns are homogeneous (i.e., the row and column vectors inside

the summary matrix are similar) Also, the relations (i.e., the “1”s

in the binary matrix) are partitioned among these summaries so

that the union of relations of the summaries represents the original

visitor data. These summaries represent similar behavior based on

all traits among all visitors, and we can induce the seed populations’

by these summaries instead of searching the whole binary matrix.

To illustrate how the summary works, given an example visitor

data R, where each row is a visitor and each column is a trait:

R =



1 1 1 1 0 0

1 1 1 1 0 0

0 0 1 1 1 1

0 0 1 1 1 1


For example, the matrix is decomposed into three summaries as the

colored partitions p1, p2, and p3. Suppose a user wants to define

the first two rows (i.e. r1, r2) as the seed population and the first

four columns (i.e. c1, c2, c3, c4) as the destined user behavior. Using

the summaries, we can undergo three steps to acquire a set of

representative behavior (Algorithm 1), which is as follows:

(1) For each summary, we first filter the rows and columns inside

by the seed population and user behavior. For example, p2 will
have its rows r3 and r4 removed and p3 will become empty.

Then, we remove all the empty summaries.

(2) Then, for each filtered summary, we find if it overlaps greatly

by rows or by columns with other summaries. For example, p1
and p2 overlap greatly by rows relative to their sizes after the

filtering. Therefore, we assign the union of their columns to

these summaries. Notice now both partitions contain r1, r2 and
c1, c2, c3, c4, which compose the representative behavior in the

visitor data under the user settings.

ALGORITHM 1: Extract Representative Behavior
Input :P – a list of data summaries

s, b – seed population and visitor behavior

ϵ – overlap threshold

Output : R̂ – a list of representative behavior

1 for p in P do /* Step (1) */

2 p.rows ← p.rows ∩ s
3 p.cols ← p.cols ∩ b
4 if p.rows = ∅ or p.cols = ∅ then
5 P.remove(p)
6 end
7 end
8 for pi in P do /* Step (2) */

9 for pj in P \ {pi } do

10 if
��� pi .rows ∩ pj .rows

���
| pi .rows |

≥ ϵ then
11 pi .cols ←pi .cols ∪ pj .cols
12 end

13 if
��� pi .cols ∩ pj .cols

���
|pi .cols |

≥ ϵ then
14 pi .rows← pi .rows ∪ pj .rows
15 end
16 end
17 end
18 R̂← single_linkage_clustering( P, distance=“Jaccard” ) /* Step (3) */

(3) Lastly, since the summaries after the assignment of additional

rows and columns might be similar to each other, we remove

the duplicated summaries by clustering them based on their

Jaccard similarity of relations. For example, p1 and p2 will be
grouped together since they become identical after step (1)

and (2). An example of a clustering technique for this purpose

is hierarchical clustering with single linkage. The remaining

summaries will be the representative behavior r for user scoring
in Equation 1.

In the algorithm, it is clear that the search for representative

behavior only involves the summaries but not the whole number

of visitors and traits, which drastically reduce the number of com-

parisons. Therefore, our next question now is how to compute

these summaries from the large scale visitor data to achieve such

interactive discovery. Overall, these summaries should be compact
(Equation 3) such that the rows and columns inside are homoge-

neous. Else, the representations of the partition cannot be used to

convey accurate representative behavior from the visitor data. Sec-

ondly, the number of summaries should also be drastically smaller

than the size of the original matrix so that interactive audience

expansion can be done (Algorithm 1).

4.2 Problem Formulation
To enable interactive discovery of representative behavior from an

arbitrary set of seed customers, we define the problem as a graph

summarization problem to compress the binary matrix into a much

smaller set of summary structure. The goal is to decompose the

matrix into disjoint groups of entries (i.e. summaries) so that the

rectangular intersections of rows and columns within a group are

homogeneous (e.g. p1, p2, and p3). Intuitively, within each group of

entries p, the behavior of rows are similar no matter which subset

of columns is removed. Thus, each summary can derive a column

representation to represent every row within the group faithfully.

Thus, after the input of s and b, the seed set’s supports and behavior



can be derived from the sizes and column representations of the

summaries, respectively, without the need to go through each entry

in the matrix. Formally, our graph summarization problem is:

• Given: bipartite relations R ⊆ U ×T
• Find: a partition of relations {p1,p2, ...,pk } = R
• to Minimize: number of partitions k
• Subject to: Compactness (p, ti ) ≥ ϵ for all p in any column ti

Partition of Relations Each partition pi contains a disjoint set of
relations (“1”s in the binary matrix). These relations also form a set

of rows ui and columns ti To represent all rows in the partition, a

column representation rpi can be defined as:

rpi =

{
t : t ∈ tpi and

|upi ∩ Rt |

|upi |
≥ 0.5

}
(2)

where Rt is the set of users having trait t .
Intuitively, a column will exist in the representation only when

more than half of the rows have a relation with it. We can use rpi to
approximately represent the rows in the partition in the audience

expansion process.

Compactness It indicates how similar the rows’ entries are regard-

ing to column ti within the same partition. This is important as

the decrease of similarity among the rows inside a partition after

removing columns depends on the compactness. Since we want

to identify the column’s value of each row without going through

each of them, the representation of a column of a partition should

be homogeneous to the rows inside. The compactness of a column

ti within a partition p is defined as:

Compactness (p, ti ) = 1 − Hb

(
1p (ti )

|up |

)
(3)

where Hb is the binary entropy function and 1p (ti ) is the number

of rows that contains ti in p. Intuitively, if the majority of rows in

the partition are either “1” or “0” on column ti , the compactness

will tend to one. Otherwise, it will tend to zero if it is half-and-half.

Overall, it indicates the quality of the partition.

Minimizing the number of partitions Since our goal is to find
the rectangular intersections of relations in the matrix such that

rows and columns inside are homogeneous, we would like the in-

tersections to be as large as possible which correspond significant

website visitors’ patterns. Therefore, one way to achieve it is to min-

imize the number of partitions. The fewer the number of partitions,

the more likely large partitions will be formed.

4.3 Proposed Method
To address the problem in Section 4.2, we propose a scalable and ef-

fective algorithm based on the minimum description length (MDL)

principle [39] to find the ideal partition for our summarization prob-

lem.We leverage the MDL principle to determine a cost function for

the best partition of relations. Using the cost function, we propose

a randomized greedy search to determine the best rows partition,

then further extend the search to find the relation partition.

The MDL principle states that the best model (i.e., partition) of

a dataset should minimize the total description length L, which is

the sum of two quantities: model description length and the data

description length with the help of the model:

L = L(M ) + L(D |M )

Figure 2: Illustration ofMinimumDescription Length (MDL)
Principle to find relation partitions from the dataset. A bi-
nary matrix can be represented as a set of summaries with
corrections. The original matrix requires seven units, while
the model and correction representations only require 3.

The first part L(M ) can be seen as the size of the relation partitions.

The second part L(D |M ) can be seen as the number of corrections

in each partition’s representation to represent the original data. To

make both the sizes of relation partitions and corrections compara-

ble, the description length of a set of relation partitions P is

L(P ) = ∥P ∥ + (∪(p∈P )rp × up ) ⊕ R (4)

where rp is the representation of a partition defined in Equation 2,

up are the visitors in the partition, and ⊕ is the disjunctive union

between sets. The difference between the original matrix and the

union of the relations reconstructed from the representations and

the visitors of the partitions denotes the corrections. The relation-

ships between the MDL formulation and our problem statement is

illustrated by Figure 2. By balancing the number of partitions and

the corrections as the partitions’ quality, we can determine optimal

groupings as data summaries for finding representative behavior.

4.4 Search Method for Building Summaries
As we define the cost function to seek the optimal partition of

relations in Equation 4, we now propose a greedy algorithm to

construct the partitions based on the function and the constraints

in the problem statement. We apply a bottom-up approach which

is based on popular graph summarization algorithms [9, 25, 28,

34]. The main difference is that while most of the summarization

techniques focus on summarizing nodes (i.e., rows and columns

in our case), our goal is to summarize the edges (i.e., the relations

in the matrix). We first provide an overview of the algorithm, and

then we describe each step in detail.

4.4.1 Overview. Given an input binary matrix R, we are looking for

the relation partitions in which each partition contains a subset of

rows and columns. Since we only require the relations to be disjoint

across different partitions, each partition can share common rows

or columns. Therefore, there are 2
U×T

numerous combinations

in the search space to look for the solution. To narrow down the

search process, our algorithm (Algorithm 2 in the Appendix) breaks

down the search problem into two main steps:

(1) RowPartitioning (line 6): Instead of partitioning the relations
directly, the algorithm first attempts to find the optimal row

partitions that minimize the cost function. There are two phases

involved:



(a) Generating Candidate Sets: To effectively compare feasi-

ble rows to group together to reduce the cost function, the

algorithm first divides the rows in the matrix into a set of can-

didates. The rows in each candidate set should share similar

sets of columns which is likely to decrease the cost function.

(b) Bottom Up Merging: In each candidate set, each row starts

as a row partition and we repeatedly merge two partitions

whose merger decreases the cost most until there are no

mergers that can decrease the cost function within a partition.

(2) Extracting Non-compact Columns (line 7-9): Until the pre-
vious step, for each row partition, there might be columns that

do not satisfy the compactness constraint in Equation 3. We

extract the relations from these columns and row partitions and

form a new binary matrix Rt at iteration t . The new matrix will

go through step (1) again, and the whole algorithm will finish

until all relations’ partitions satisfy the compactness constraint.

4.4.2 Generating Candidates for Merging. The goal of partitioning
the rows in thematrix before themerger is to allow themerging step

to be efficient and accurate at the same time. To allocate the rows

in the binary matrix into different candidate sets for merging, we

use hashing strategies to divide the rows. The objective is to design

a scalar function h(x ) so that h(ui ) = h(uj ) when two rows ui and
uj should be compared for a merger. One important motivation to

use hashing is to enable parallelization among different merging

operations. In practice, to handle millions of visitor’s information,

we use distributing computing platform (i.e. Spark) to compute

the summaries. In distributed computing architecture, data are

distributed across different partitions. All partitions execute the

tasks concurrently until there is a need to re-partition the data

(i.e. shuffle). Therefore, to utilize resources, we need to ensure all

mergers take similar computation time. We will discuss more in

Section 4.5 for designing the hashing strategies. Here, we first

describe the goals for hashing the rows in Spark.

G.1 Similar Jaccard Similarities. For the cost function (Equation 4),

the greater the Jaccard similarity among the rows in a summary,

the more similar each rowwill be with the representation which

also implies a better likelihood to minimize the cost. Thus, we

want rows with high Jaccard similarity to be grouped in the

same candidate sets.

G.2 Evenly sized candidate sets. The bottom-up approach discussed

next to merge the rows has a quadratic time complexity in each

candidate set. Therefore, it is particularly important to make

sure a balanced distribution of rows among the partitions in

Spark. Otherwise, many data partitions will be left idling and

need to wait for the skewed ones to finish.

4.4.3 Bottom Up Merging. In each candidate set, we are given a

subset of rows from the input matrix in each iteration (line 4). We

are interested in finding the partition of rows such that the cost

function (Equation 4) is minimized within the candidate set. We

use a bottom-up approach to merge the rows (Algorithm 3 in the

Appendix). The algorithm performs the following operations:

(1) It starts with all rows belonging to an individual partition

and all partitions being the candidates for merging(line 2).

For this initial partition C, we compute the cost (line 3).

(2) Among the candidates, we randomly pick a row partition

c0. We try to merge it with the rest of the candidates and

calculate the new cost (line 9). We keep the best candidate

with the minimum cost after merging (line 10-13).

(3) We compare the minimum cost after merging with the cost

without any merging. If there is a decrease, we merge c0 with
the best candidate and update the current cost (line 16-17).

Otherwise, we put c0 into the final result (line 19). In both

cases, the candidate set C has one fewer element.

(4) We continue steps 2-3 until there are no more candidates.

The bottom-up algorithm’s complexity is O (U 2T ), where U is

the number of rows, and T is the number of columns in the input

matrix. In the beginning, the candidate list has U items. The list

removes an item after each iteration. Suppose there areUt items in

the list and in each iteration t , the candidate c0 needs to compare

withUt − 1 items. Therefore, there are
U (U+1)

2
comparisons. Lastly,

for each comparison, the row partitions need to combine their

columns to compute the new cost, which requires O (T ) scans of
columns. The sizes of candidate sets are crucial for the performance

in terms of algorithmic complexity and parallelization in distributed

computing, which we will discuss more in Section 4.5.

4.4.4 Extracting Non-compact Columns. After the row partitions

are created, the goal is to increase the compactness of these parti-

tions so that they become available for interactive representative

behavior search in Algorithm 1. Recalling Equation 3, in each row

partition (which can also be treated as a relation partition), it con-

tains columns with different compactness values that depend on

the relations. Therefore, we can divide each partition’s relations

based on whether they belong to columns that satisfy a compact-

ness threshold (line 7-8 in Algorithm 2). If a column is compact,

its relations stay in the partition and are removed from the input

matrix. Else, the relations are extracted and returned to the input

matrix. The resulted matrix and relation partitions are pushed to

the next iteration and result, respectively.

4.5 Speed Up Using Hashing Strategies
Mentioned in Section 4.4.2, the goals of hashing the rows is to ensure

similar rows to be grouped in the same partition (G.1) and ensure

even data distribution among partitions in Spark (G.2). We propose

two hashing techniques to cope with these goals and discuss how

to combine them to acquire both accuracy and efficiency.

4.5.1 Overview of hashing strategies. The overview of applying

hash strategies to speed up the merging process can be seen in

Algorithm 4 in the Appendix and Figure 3. Overall, the algorithm

generates a candidate set based on the row partitions for bottom

up merging (Algorithm 3) for a number of iterations. Within each

iteration, it first groups the input row partitions by MinHash LSH
(line 2) based on their representations’ similarities (G.1). Then,
within each group, the algorithm performs a two-stage merger

by first dividing the partitions randomly (line 4) for a more even

data distribution across different merging operations (G.2). After
merging is done within each random partition, the results from

these partitions will be merged again inside each LSH partition.



Figure 3: Overview of hashing strategies to generate candidate sets for merging operations (Algorithm 3). First, the rows are
partitioned by Locality Sensitive Hashing (LSH) that allocates similar rows to different partitions. Then, a salted key is gen-
erated to further partition the rows inside a LSH partition. The merging operation is done first on the rows in each salted
partition then again on the results from the partitions within a LSH partition. Noted that all merging operations among dif-
ferent partitions can be run concurrently in Spark.

Figure 4: Theoretical probability of two rows being allocated
in the same candidate set at least oncewith different number
of hash functions k and iterations t . Different parameters
can result in similar collision probability but the run time
might differ significantly.

4.5.2 MinHash LSH. To allocate rows whose Jaccard similarities

exceed a predefined threshold, we can use MinHash, which per-

forms a random projection of high dimensional data into lower

dimensional space, and then LSH, which hashes similar items into

the same hash table (i.e. buckets) with high probability.

MinHash signature generation. For each row ui (i.e. visitor), its
MinHash signature is a vector of MinHash values from n indepen-

dent hash functions [h1 (ui ),h2 (ui ), ...,hn (ui )] so that the probabil-
ity p of a MinHash collision between the rows is the same with their

similarities (i.e. sim(ui ,uj ) = Pr [hk (ui ) = hk (uj )]). Therefore, by
increasing the number of hash functions k , the collision probability

of the hash signature decreases to pk [37].

Controlling the Probability of Comparisons Among Rows.
The purpose of iterations (line 1) and LSH partition (line 2) in Alg. 4

are to ensure that similar rows can be encountered within the same

candidate set at least once, while disallowing non-similar rows to be

grouped in the same partition. Formally, given k hash functions and

t iterations, the probability that two rows with Jaccard similarity s
collide at least once (i.e. a successful comparison) is:

P[s] = 1 − (1 − sk )t (5)

For example, if we want rows with similarity more than 0.7 to be

allocated in the same candidate set with probability higher than

0.95, we can produce a LSH table with 2 MinHash functions (k = 2)

and merge the rows with 5 iterations (t = 5). The probability of a

successful comparison in terms of Jaccard similarity has a form as

an S-curve (Figure 4). Figure 4 illustrates that several success curves

are almost identical under different parameter settings. In general,

the decrease of collision probability by increasing the number of

hash functions can be compensated by the increase of iterations.

However, since the increase of hash functions also decreases the

expected sizes of candidate sets, it might reduce the number of

comparisons in the merging process and increase the parallelism of

multiple merging operations, which can lead to significant speed

up in the summarization (Section 5.2).

4.5.3 Salted Hash. It is a simple hash function where each row is

assigned a random integer. It aims at dividing similar rows when

the candidate set becomes huge after LSH partition.

Two Stage Summarization Using Salted Hashes. For salted

hashes, its usage lies on further dividing the rows in the candi-

date set in multiple subsets. The intuition is that within a candidate

set, all rows should be similar to each other. Thus, it is just a matter

of time for many of them to be merged together. Therefore, during

the bottom-up merging routine, we can choose to compare a small

subset inside the candidate set first, and then we can further merge

the row partitions formed from the subsets. In Figure 3(b), we il-

lustrate that in a distributed computing environment, since similar

jobs (i.e. bottom up merging among candidate sets) needs to finish

together in order to begin the next operation, the bottom neck of the

summarization depends on the largest candidate set from the LSH

partitions. In practice, many online visitors might exhibit similar

behavior. Thus, it is not uncommon to have skewed distributions

of rows among the LSH partitions. Salted hashes, therefore, pro-

vides a solution to dramatically reduce the number of candidates in

each merging process (Figure 3(a)). We further illustrate that such

strategy can result in magnitudes of speed up in the evaluation.

5 EVALUATIONS
In this section, our goal is to demonstrate:

(1) Our audience expansion method achieves at most around 10×

better accuracies and interactive computing time (all within

seconds and 27× faster) on real datasets.

(2) Our summarization pipeline contributes to meaningful perfor-

mance improvement.

(3) The interactive audience expansion enables a new visual ana-

lytics system on real commercial datasets. Our market experts

can identify meaningful potential target customers using the

features provided by the system.

For dataset details and experimental setup see Appendix B-C.



Table 1: The table shows the accuracy in terms of precision, recall, and F-score as well as run time using our summary method
vs. some benchmark approaches of interactive audience expansion. The improvement and speed up are calculated against the
best results from the benchmark approaches.

Accuracy Run Time

Dataset Label Methods Precision Recall F-score Improvement Time (s) Speed Up

Retail Rocket Transaction (Item 1) One Pass Logistic Regression 0.0612 0.6 0.111 - 137 -

K Means 0.000235 0.933 0.00047 - 27.5 -

Graph 0.229 0.733 0.349 - 68.7 -

Summary (Ours) 0.4 0.533 0.457 1.31× 2.87 9.56×

Transaction (Item 2) One Pass Logistic Regression 0.0123 0.256 0.0235 - 395 -

K Means 0.000560 0.907 0.00112 - 60.4 -

Graph 1 0.0232 0.0455 - 88.7 -

Summary (Ours) 0.324 0.721 0.457 9.82× 2.87 11.6×

Transaction (Item 3) One Pass Logistic Regression 0.0104 0.423 0.020 - 941 -

K Means 8.85e-5 0.346 0.000177 - 112 -

Graph 0.25 0.0385 0.0667 - 105 -

Summary (Ours) 0.167 0.461 0.245 3.67× 2.87 27.1×

AAM Purchases (Cosmetics) One Pass Logistic Regression 0.563 0.655 0.605 - 15.5 -

K Means 0.00117 0.948 0.00234 - 1.58 -

Graph 0.140 0.353 0.200 - 44.1 -

Summary (Ours) 0.722 0.707 0.714 1.17× 0.661 2.40×

Purchases (Electronics) One Pass Logistic Regression 0.796 0.992 0.883 - 17.38 -

K Means 0.00301 1 0.006 - 1.70 -

Graph 0.442 0.798 0.569 - 50.6 -

Summary (Ours) 0.916 0.802 0.855 0.968× 0.958 1.77×

5.1 Accuracy
This section evaluates the accuracy through comparisons against

alternatives using ground truth labels and assesses the trade-offs

between summaries’ quality and core pipeline parameters. We use

the F-score over the positive class (i.e., expanded audiences) to

measure audience expansion’s accuracy with ground truth labels.

BenchmarkMethods for InteractiveAudience Expansion.We

describe different approaches that can suit our purposes of inter-
active audience expansion. We referenced from the survey related

to audience expansion [2] and neglect methods that require more

than hours to return results. These methods all target at predicting

visitors as for potential targets for advertisement, and they are, in

theory, able to provide results within a reasonable time:

(1) One Pass Logistic Regression: A straightforward approach

to predict potential audiences for advertisement is to train a

binary classifier using the seed customers and some samples

of general visitors. For interactivity purposes, we use the One

Pass Logistic Regression (OLR) [35], an efficient approach to

perform logistic regression on a dataset, as the benchmark for

the machine learning approach for audience expansion.

(2) K Means Clustering: Another approach to address the prob-

lem is to cluster the data [38]. The clustering approach works

by first cluster the seed customers and remaining dataset sepa-

rately. Then, for the remaining dataset, each data is classified

as the expanded audience if it is closer to a cluster from the

seed set than the clusters from the dataset. Among all cluster-

ing methods, k means clustering is the most efficient one. We

choose the number of clusters k (1-10) that reaches the best

accuracy and converges within 300 iterations.

(3) User to User Similarity Graph. The graph-based approach

for audience expansion is to select potential customers through

a user to user similarity graph [32]. The potential customers

are queried if they are similar to the seed customers. For these

potential customers, they are scored with a scoring function

derived from the seed customers. LSH is used to connect the

users by their approximated similarities.

Accuracy and Online Running Time. The accuracies and run

time on the real datasets are shown in Table 1. Overall, our sum-

mary audience expansion method achieves better F-scores (at most

10×) than other approaches and significantly faster computations

(at most 27×). The good accuracy may come from two reasons.

First, given a set of seed customers, our method results in multi-

ple score functions that capture different representative behavior,

which avoids “averaging” the discriminative features between the

seed customers and the total population. Such benefit avoids the

algorithm from being over-selective (i.e. using LSH to select ex-

tremely small samples that results in a low recall in Graph) or not

distinguishing the seed set from the whole dataset (i.e. low precision

in the K Means). Second, the summary captures the important at-

tributes (i.e., traits) from a high dimensional space of online visitor

behavior, which avoids underfitting like logistics regression when

constructing a meaningful score function or classifier. For the run

time, our approach’s time complexity is based on the number of data

summaries, which is drastically smaller than the number of rows

and columns in the original matrix. It allows us to return results

within seconds from millions of visitors or traits in the datasets.

Effect on LSH parameters. To demonstrate that the accuracy

of audience expansion is not sensitive to the parameter choice,

we measure the accuracy of AAM audience expansion with varied



Figure 5: The effect of increasing number of hash functions
in terms of accuracies (left) and number of summaries re-
sulted (right). The labels show the theoretical collision prob-
abilities for items with similarity = 0.7. Also, all summaries
provide audience expansion results within 1 second.

Figure 6: Run time (left) and memory usage (right) with dif-
ferent numbers of hash functions (k) and iterations (t ).

collision probabilities (P[s] in Equation (5)). In Figure 5, the number

of data summaries is small when the number of hash functions is

high since the more similar rows are allocated in the candidate set,

the higher the quality the greedy merging algorithm will result.

Still, the accuracy does not differ much since the representative

behavior can still be acquired efficiently in Algorithm 1.

5.2 Scalability
In this section, we evaluate the effect of different LSH parameters

to show that there is an optimal setup between the sizes and num-

bers of batch processing. Also, we demonstrate an end-to-end run

time improvement using our hashing strategies and compression

capability of our summarization algorithm.

LSH parameters.We report the effect of LSH parameters on run

time and memory performance (Figure 6). We increase the num-

ber of hash functions and iterations together to maintain similar

collision probability. For memory usage, increasing the number

of hash functions reduces memory usage since reducing collision

probability within an iteration can reduce the number of rows in

a candidate set. However, the run time might not improve since

there exists an overhead for each merge operation. Each time the

rows are relocated to a different candidate set, it results in a shuffle
in the distributed environment, where the data are transferred to

different partitions, and a network cost occurs.

End-to-end evaluation. We report the run time breakdown of

the merging operation (Algorithm 3) with the LSH and salting

optimizations. We sample 10,000 visitor data from AAM dataset to
demonstrate the run time improvement. Figure 7 shows the cumu-

lative run time after applying each hashing strategy. In general, the

hashing strategy allows the merging operation to scale well and

remove 98% of the time. It shows that by partitioning the data and

ensuring an even distribution of data in Spark, the whole merging

operation achieves a much better concurrency and efficiency.

Figure 7: Effect of LSH and Salting strategies.

Figure 8: Cost reduction throughout iterations (Algo. 2).

Cost Reduction and Summarization Over Iterations of Row
Partitioning.We demonstrate the effects of relation summariza-

tion through repeatedly summarizing the rows in the dataset (Al-

gorithm 2). Figure 8 shows a “waterfall” structure of cost reduction

after each iteration of summarization. Most relation summaries are

quickly retrieved at the beginning of the iterations and rows re-

mained for the merging operation are drastically reduced afterward.

This provides intuition behind our cost function (Equation 4), as

well as the effectiveness of the summarization strategy.

5.3 Use Case
Our highly interactive audience expansion algorithm opens new

opportunities for developing interactive audience management

systems at scale. For digital marketing, we implement a system to

help marketers choose online visitors for advertisement (Figure 9).

For qualitative analysis of our system’s usefulness, we demon-

strated our system to explore a real dataset on 2.3 million online

visitors. First, market analysts would like to launch advertisements

to online visitors who are likely to be video editors to purchase the

company’s video editing software. Therefore, they initialized the

seed set as the visitors who used the company’s video editing soft-

ware (Figure 9(a)). Also, they removed the traits related to behavior

about using the company’s photo editing software (Figure 9(b))

since online users typically had already purchased both software

as a bundle. The algorithm then returned a list of line charts (Fig-

ure 9(c)), where each line chart represented the score distribution

from a representative behavior. The line chart values were sorted so

that audiences with scores greater than a threshold will be queried

by brushing the line. By trying different thresholds and exploring

the selected audience’s behavior, our analysts identify an interest-

ing group of online visitors who searched for sample images on the

company’s search engine website (Figure 9(d)). Thus, the marketers

decided to launch advertisement about video editing software on

the image search engine website, as video producers were likely to

search for online images for their video productions.

Overall, our analytics system allows marketers to interactively

discover potential profitable online visitors and identify the key

attributes of these populations, providing new experience on audi-

ence management systems and commercial innovations.



6 CONCLUSION
This paper introduces a novel interactive audience expansion algo-

rithm for a large matrix of online visitor behavior. Our approaches

mainly focus on creating data summaries that can retrieve repre-

sentative behavior among online visitors within seconds. While a

straightforward graph summarization approaches can construct

the summaries, we provide an efficient hashing strategy that sig-

nificantly speeds up the computation in a distributed computing

environment. The data summaries also provide a significant im-

provement in audience expansion accuracy and online run time on

real commercial datasets. To demonstrate the interactive experi-

ence, we proposed an interactive system for utilizing our algorithm

in business decision making. We believe that these results will in-

spire data scientist to design interactive recommendation systems

for industry scale online visitor activities.
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Appendix

A DETAILED ALGORITHMS

ALGORITHM 2: Relation Partitioning

Input :R – input binary matrix

c – threshold of compactness

Output :P – a list of relation partitions

1 M ← R = U ×T ;

2 P ← [];

3 whileM is not empty do
4 S ← {{u }∀u ∈ UM };

5 t ←1;

// Section 4.5

6 PS ←hash_and_merge(S);
// Section 4.4.4

7 remove the relations in M that satisfy the compactness constraint in PS ;
8 remove the relations in PS that do not satisfy the compactness constraint;

9 P ← P + PS ;
10 end

ALGORITHM 3: Merging Rows in a Candidate Set

Input :R – input binary matrix as a list of rows

Output :Prows – a list of row partitions

1 Prows← [];

2 C ← {{r } |r ∈ R};
3 current_cost ←cost(C);
4 while C is not empty do
5 c0 ←random_pop(C);
6 cbest ←undefined;

7 best_cost←infinity;
8 foreach c ∈ C do
9 cost ←cost(C ∪ {c0 ∪ c } \ {c0, c });
10 if cost < best_cost then
11 cbest ←c ;
12 best_cost←cost;

13 end
14 end
15 if cbest < current_cost then
16 cbest ←cbest ∪ c0 ;
17 current_cost ←best_cost;

18 else
19 Prows .push (c0);
20 end
21 end

B DATASET DETAILS
To evaluate scalability and accuracy, we experiment on two online

commercial datasets. The first dataset Retailrocket is a public

dataset which has 1,407,580 visitors’ behavior logs. These logs con-

sist of an action (view, add to cart, and transaction) on one of the

235,061 products. Therefore, there are 705,183 unique traits. The

second dataset AAM is an internal dataset from our CRM platform,

which has 178,349 visitors and 3,755 traits. The traits consist of vis-

itors’ logs and their demographics. For evaluating the accuracies of

audience expansion, we label the visitors by whether they contain

the trait that indicates purchasing behavior (e.g., transaction of an

item in Retailrocket), which translates the problem into a binary

classification. Then, we split the data into a training and testing

set. Our objective is to see by learning the representative behavior

from the seed set that contains the label, how is the accuracy of

the score function in retrieving the visitors with the purchasing

behavior in the test set. Notice that this is an extremely imbalanced

classification problem. Among millions of visitors, only hundreds

of them will lead to purchases.

C EXPERIMENTAL SETUP
For constructing the summaries, we report results on a Hadoop

cluster with ten nodes, and each node has four AMD Opteron 6276

2.3 GHz CPUs with 256GB of RAM. We report runtime averages

from multiple trials. Without any specifications, our LSH hash ta-

bles contain two bands with 1 MinHash signature in each band (i.e.,

two hash tables), and we have five iterations in the row merging

operations. Also, we set all thresholds (i.e. compactness and overlap-
ping) to 0.9. For the audience expansion using the summaries, we

select visitors as the expanded audiences when they have at least

one score greater than 0.9 (i.e.,max (αi ) ≥ 0.9). The expansions are

run in a MacBook Pro with 2.4 GHz 8-Core Intel Core i9 CPUs and

32GB RAM.

D HASHING ALGORITHM

ALGORITHM 4: Overview of Hashing Strategies

Input :S – input candidate set

T – number of iterations

Output :PS – a list of relation partitions

1 for t = 0; t < T ; t++; do
2 partition S to SLSH by MinHash LSH;

3 foreach sLSH in SLSH do
4 partition sLSH to ssalt by salted hashes;

5 foreach s in ssalt do
6 s ← merge_rows(s);
7 end
8 sLSH← merge_rows(∪ssalt );
9 end
10 S ←∪SLSH ;

11 end
12 PS← S ;



Figure 9: An Audience Expansion interface that provides (a) choices of seed customers through defining segments (b) options
of traits to be included for scoring functions (c) audience expansion results as an interactive line chart (d) attributes overview
of a selection of expanded audiences.
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