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ABSTRACT

We present a system designed for exploring urban data set relation-
ships introduced by the Data Polygamy framework, which are useful
to uncover interesting patterns and interactions between the different
components of a city. Since there can be a plethora of relationships
to analyze, our interface helps discover relationships that are poten-
tially interesting by allowing users to visually query and explore
the relationship set. We will demonstrate the effectiveness of such
interface through a few case studies, and demo visitors will be also
able to do their own exploration.
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1 INTRODUCTION

Our increasing ability to collect, transmit, and store data, coupled
with the growing trend towards openness, creates a unique oppor-
tunity to enable cities to deliver services efficiently and sustainably
while keeping their citizens safe and well-informed. The challenge
now lies in making sense of all the available data so that they can be
used effectively by city agencies.

Urban data is unique in that it captures the behavior of the different
components of a city, namely its residents, existing infrastructure
(physical and policies), and the environment. While exploring a
city’s data exhaust to study such components, an expert may find an
unexpected pattern or feature in a data set that may be explained by
other related data. For example, consider the top plot in Figure 1,
which shows the number of daily taxi trips in New York City (NYC)
in 2011. While the distribution of trips tends to follow a pattern over
time, we observe some atypical drops in August. A natural question
is what might have caused these drastic reductions. By examining
precipitation data (bottom plot in Figure 1), we discover that these
drops occur on days with unusually high precipitation levels: the first
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Figure 1: Variation of the number of taxi trips in NYC and its
relationship with precipitation.

two peaks are related to unexpected heavy rainfalls that disrupted
traffic in the city,! and the last one was caused by hurricane Irene.

Therefore, in order to understand a city, it is important for an
expert to also understand how the different components interact over
space and time. The discovery and analysis of potential relation-
ships between disparate data can lead to new hypotheses that explain
phenomena represented in the data. In the previous example, the
hypothesis would be that atypically heavy rainfall leads to signifi-
cant reduction in the number of taxi trips. In addition to enabling
hypothesis generation, studying relationships among data sets can
also help with hypothesis testing, helping experts frame appropriate
policies to counter them.

Uncovering relationships between disparate urban data sets is
challenging for many reasons. First, urban data can be large verti-
cally, containing hundreds of millions to billions of data points, and
horizontally, consisting of several attributes [1]. Second, there is
a large number of urban data sets: NYC alone has published over
1,300 data sets in the past two years [3], and this is just a small
fraction of the data collected by the city. Also, urban data contain
both spatial and temporal attributes at different resolutions, which re-
quires an expert to look for data interactions in multiple resolutions.
Because a relationship can exist between any pair of attributes, the
data complexity coupled with the sheer number of available data sets
and attributes creates a combinatorially large number of possible
relationships where only a small fraction is potentially meaningful.

To address these challenges, we proposed Data Polygamy [2], a
framework that efficiently identifies meaningful relationships across
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urban data sets. We introduced the notion of topology-based rela-
tionships, where two data sets are related if there is a relationship
between the salient features of the data (e.g., the atypical drops
and peaks in Figure 1). Users can then pose relationship queries:
hypothesis generation is supported by querying for relationships
among all data sets, and a hypothesis can be tested by querying for
relationships between the data sets involved in the hypothesis. To the
best of our knowledge, no existing method addressed the problem
of efficiently identifying spatio-temporal relationships that take into
account salient features in the data.

Given a collection of data sets such as NYC Open Data [3], even
after pruning relationships that are not statistically significant [2],
users are still left with many relationships to analyze, both to discover
potentially interesting relationships as well as to assess their validity.
In this demo, we present a visual interface to assist users query
and explore relationships. Since the many-to-many polygamous
relationships imply a graph, we designed an interface that allows
users to inspect this graph and interactively query the relationship
set. Besides describing the system and its design, we present case
studies that demonstrate its effectiveness.

2 THE DATA POLYGAMY FRAMEWORK

The data polygamy framework primarily consists of two components:
feature computation, and relationship evaluation, which uses the
computed features to identify the relationships. In this section, we
give a brief overview of our framework. For more details, see [2].

2.1 Feature Computation

Consider the precipitation data and the NYC taxi trip data depicted
in Figure 1. There is no apparent relation between the two data
during the normal course of time: it is only when the precipitation
is unusually high that there is a connection with taxi trips. This is
common among urban data sets, where relationships become visible
only at spatio-temporal regions (locations in space and time) that
behave differently compared to the regions’ neighborhood. In the
Data Polygamy framework, we explored the use of computational
topology to identify these interesting relationships. In particular, we
introduced the notion of topology-based relationships, where two
data set attributes are related if there is a relationship between the
salient features of the data.

To give some intuition for why and how we apply topology, sup-
pose we model a time step in an urban data set as a terrain, where
the height of each point of the terrain represents the data value at
that spatial location. The terrain (or data) is mathematically modeled
as a scalar function, which maps each point on the spatial domain to
a real value representing the function value. Given a scalar function,
the variation over space is captured by the peaks and valleys of this
terrain. This can be extended to include time by modeling the data
as a high dimensional terrain. The salient features would then corre-
spond to the regions behaving differently from their neighborhood,
and are inherently represented as tall peaks and deep valleys. For
instance, Figure 2 depicts a terrain represented as scalar function
f; given the threshold fi, the red peaks correspond to the salient
features of this function.

We use and extend efficient algorithms from computational topol-
ogy to compute salient features in the framework. Such algorithms
are generic, in the sense that they work on data having different
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Figure 2: Example of a scalar function f represented as a ter-
rain. The red peaks above the given threshold value f| corre-
spond to the salient features of this function.

dimensions and resolutions without requiring any modification. Fea-
tures can also have arbitrary spatial structures and straddle multiple
time intervals. We also designed a data-driven strategy to identify
the required feature thresholds, since manually selecting them might
not be feasible over all data sets, especially when there are hundreds
of data sets each having several attributes.

2.2 Relationship Evaluation

Given two attributes of a pair of data sets, to determine whether they
are related, we assess how similar their corresponding terrains are,
i.e., the similarities in the spatio-temporal variation patterns of the
scalar functions representing the data. Thus, possible relationships
are identified depending on the commonality between the salient
features: two features are considered to be related if they occur at
the same spatio-temporal region; they are positively related if both
features are positive or negative, and negatively related otherwise
(e.g., features from precipitation and NYC taxi trips corresponding
to hurricane Irene in Figure 1 are negatively related). Relationships
are then evaluated based on two measures: score and strength.

Relationship Score 7. This measure captures the overall nature (po-
larity) of the relationship, i.e., whether it is always positive (features
are always positively related), always negative (features are always
negatively related), or somewhere in between. T ranges from —1 to
1: a value closer to —1 indicates the two attributes are negatively
related, while a value closer to 1 indicates they are positively related.

Relationship Strength p. This measure is used to capture how fre-
quently features in the two attributes are related: the more frequently
the features are related, the stronger the relationship is. p ranges
from O to 1: a value of p closer to 1 indicates a strong relationship
between the two attributes, since a feature in one attribute almost
always indicates a feature in the other attribute as well. Similarly, a
value of p close to 0 indicates a weak relationship.

In addition, the statistical significance for each relationship is
also computed, and the corresponding p-values are returned. Since
Monte Carlo methods assume independence across samples, to as-
sess the statistical significance of a potential relationship, we de-
veloped restricted Monte Carlo permutation tests that respect data
dependencies due to spatial and temporal proximity.

2.3 Relationship Querying

The framework supports the following relationship query:

Find relationships between Dy and D, satisfying clause
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Figure 3: The user interface for the system and its different components.

where D and D; are collections of data sets. Relationships across
attributes of these two collections over all possible spatio-temporal
resolutions are evaluated. In cLAUSE, optional condition parameters
can be specified to filter relationships satisfying a minimum score 7
or strength p, or a maximum p-value.

3 VISUALLY EXPLORING RELATIONSHIPS

Even after pruning relationships that are not statistically significant,
the size of the relationship set can be overwhelming for users. As
an example, a collection of 9 data sets can still generate as many as
100 relationships that are potentially meaningful for a single spatio-
temporal resolution, and when working with the NYC Open Data,
over 10,000 relationships are derived [2]. Our goal is to help users
visually explore results from such relationship queries, thus assisting
them in their analyses. To do this, we designed an interface that
allows users to visually specify queries (mentioned in Section 2.3),
as well as inspect and filter the results in an interactive manner.

3.1 Data Set Exploration

Users can select data sets for the query based on their main interest
using the Query Panel (Figure 3(a)). This panel lists the available
data sets and provides a relationship overview of each of these data
sets to the user. In particular, for each data set D, the following two
properties are also shown: the number of data sets having at least
one attribute relationship with D; and the total number of spatio-
temporal resolutions where D has at least one relationship. This
helps users understand the extent of the polygamous relationships
and the scope of the resolutions for different data sets.

One or more data sets are selected from the query panel in order
to perform the query. If a single data set D is selected (the pivot
data set), a one-to-many query is performed, i.e., the relationships
between D and the remaining data sets are retrieved; if multiple
data sets are selected (a collection D), a many-to-many query is
performed, i.e., all the relationships among the data sets in D are

retrieved. For instance, in Figure 3(a), the user is interested in
a many-to-many query between Taxi Trips and Weather data sets.
Users can then fine-tune the query by filtering based on the different
parameters, namely the score, strength, and p-value (see Figure 3(e)).
Note that these are the same types of queries supported in the Data
Polygamy framework [2].

To further focus their analyses, the user can also select the spatio-
temporal resolution they want to explore by using a combo box
selection, which provides a list of all the available resolutions sup-
ported by the selected data sets. For example, in Figure 3(b), the
desired resolutions are the city resolution with respect to space and
the hourly resolution with respect to time—henceforth represented
as (city, hour) resolution.

3.2 Relationship Exploration

The specified query results in a set of relationships, which, as men-
tioned earlier, can be prohibitively large. We therefore allow the
visual inspection of these relationships, as well as provide visual
cues to ease the analysis process.

Relationship Graph. Note that the set of relationships can be mod-
eled as a graph, where the nodes correspond to attributes of the
data sets, and edges denote a relationship. We use an interactive
Sankey diagram, which computes a fully automatic layout in a force-
directed approach to display these relationships between attributes
in the most visible manner [4].

All nodes corresponding to the attributes of a given data set share
the same color. The size of the node in this diagram encodes the
number of relationships. The opacity of the edges representing the
relationship encodes the strength (p) of the relationship. The score
(1) is encoded using the stroke width of the edge, while the polarity
of the relationship is encoded using color (blue and red for positive
and negative relationships, respectively). These visual cues give
a useful overview of how the attributes are related. For instance,
Figure 3(b) depicts the relationships between Taxi Trips and Weather
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Figure 4: Selecting relationships that can show the potential influence of a gas price increase.

data sets, and by looking at the graph, it is clear that most relation-
ships are positive and strong. By hovering over the relationships,
their properties are displayed, such as score and strength. To help
with the exploration, users are also allowed to: re-arrange the po-
sition of the attributes by dragging them in the canvas; zoom in
and out; select attributes of interest to focus the analysis on their
relationships; and hide attributes that are not interesting.

As mentioned earlier, users can also interactively select the op-
tional condition parameters of the query: score, strength, and p-value
(Figure 3(e)). Moving the sliders or typing the thresholds dynami-
cally updates the graph to reflect the remaining relationships after
filtering. Since this filtering is interactive, it streamlines the explo-
ration and helps users choose parameters that best suit their analyses.

Exploring Relationship Statistics. Overall statistics regarding the
graph are provided (Figure 3(d)), in particular the number of rela-
tionships for each of the attributes. Whenever an attribute is selected
in the graph, the distribution of the strength and score of the re-
lationships involving that attribute is visualized as a scatter plot
(Figure 3(c)): each point in the plot corresponds to a relationship,
and the x- and y-axis of the plot correspond to the score and strength,
respectively. Hovering over the points shows their properties. Users
can hide relationships that are not of their interest by double-clicking
on the corresponding points. The statistics and the distributions are
automatically updated whenever the graph changes.

4 DEMONSTRATION

In our demonstration, we will allow visitors to interact with the
system and visualize the relationships across a plethora of urban
data sets. In addition to doing their own explorations, we will present
a few case studies that show the usefulness of the interface, such as:

Why it is so hard to find a taxi when it is raining?

In NYC, residents have the impression that it is hard to find a taxi
in rainy days. To test such hypothesis, and to generate one for the
explanation, an expert can select the Taxi Trips and Weather data
sets. When exploring the (city, hour) resolution, she can use the
filter queries to focus on more meaningful relationships (e.g., 7> 0.6
and p-value < 0.05) and remove all the Weather attributes except for
the precipitation one. A (very strong) negative relationship between

number of taxi medallions and precipitation can then be found,
confirming the hypothesis. A positive relationship between average
taxi fare and precipitation generates a hypothesis for the explanation:
taxi drivers are target earners, and they stop working after reaching
their goal [2]. This case study is depicted by Figure 3.

Would a reduction in traffic speed reduce fatalities?

To test such hypothesis, first, an expert can select both Traffic Speed
and Vehicle Collisions data sets from the Query Panel. By choosing
the (neighborhood, day) resolution, and retaining only the relation-
ships with respect to the speed attribute from the Traffic Speed data
set, many positive relationships can be found between speed and the
number on fatalities. By inspecting relationships from the distribu-
tion, the expert can also see that they all have a high score, which
indicates that the hypothesis is true, and that a reduction on the speed
limit in the streets could be beneficial.

What influence does an increase in gas prices provide?

An expert starts by selecting the Gas Prices data set, and choosing,
say, the (city, month) resolution. She then selects all the data sets
that have relationships with the Gas Prices: Weather and Taxi Trips.
By retaining only the average gas price attribute in the graph, a
significant negative relationship between number of taxis and gas
price can be found. This indicates that gas price increases influence
on the number of taxis running in the city, which may create demand
issues. This case study is depicted in Figure 4.
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