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ABSTRACT
Online visitor behaviors are often modeled as a large sparse matrix,

where rows represent visitors and columns represent behavior. To

discover customer segments with different hierarchies, marketers

often need to cluster the data in different splits. Such analyses re-

quire the clustering algorithm to provide real-time responses on

user parameter changes, which the current techniques cannot sup-

port. In this paper, we propose a real-time clustering algorithm,

sparse density peaks, for large-scale sparse data. It pre-processes the
input points to compute annotations and a hierarchy for cluster as-

signment. While the assignment is only a single scan of the points,

a naive pre-processing requires measuring all pairwise distances,

which incur a quadratic computation overhead and is infeasible

for any moderately sized data. Thus, we propose a new approach

based on MinHash and LSH that provides fast and accurate estima-

tions. We also describe an efficient implementation on Spark that

addresses data skew and memory usage. Our experiments show

that our approach (1) provides a better approximation compared to

a straightforward MinHash and LSH implementation in terms of

accuracy on real datasets, (2) achieves a 20 × speedup in the end-to-

end clustering pipeline, and (3) can maintain computations with a

small memory. Finally, we present an interface to explore customer

segments from millions of online visitor records in real-time.
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1 INTRODUCTION
People’s behavior during their visits to commercial websites is being

continuously recorded by the companies’ web analytics systems.
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Figure 1: Histograms of website visitor traits of two large
online retail stores.

Marketers of online retail stores often use custom binary attributes

to capture the behaviors of their website visitors, such as whether a

visitor has browsed a catalog of products, clicked an advertisement,

or made a purchase. As a result, the visitor behavior is stored as a

binary matrix R ⊆ U ×T , whereU is a set of visitorsu andT is a set

of user behavior t . For example, an overview of two visitor datasets

collected from two online retail stores is shown in Figure 1. The

figure shows the distributions of traits by counting the numbers

of visitors associated with each trait. The whole list of behavior

consists of thousands of trait attributes to cover as many behaviors

as possible from millions of online visitors every day so that it

results in a large sparse binary matrix. One of the major objectives

for capturing visitor behavior is to discover customer clusters based

on their similar sets of attributes. For marketers, the ideal customer

clusters vary based on a versatile range of needs. For example, they

may want to find general clusters that divide the major populations

or small clusters that represent niches. Also, they may want to

further break down a cluster to obtain further splits based on the

selected attributes. Therefore, to exploit the potential of the visitor

behavior data to the fullest, the analytics system has to allow users

to cluster visitors into different hierarchies in real-time.

Providing clustering results based on user inputs (e.g., number

of splits) in real-time is challenging since it requires a response

in a few seconds. Several data exploration goals such as making

hypotheses or generalization will be adversely affected if a result

does not come within 500ms [28]. Although there exist efficient

clustering algorithms such as K-Means and Expectation Maximiza-

tion (EM), they cannot provide real-time responses when the user

changes the parameters and instead rerun the whole algorithm.

One promising way to provide fast responses is to pre-compute a

hierarchical relationship between data points so that the allocation

of data to different clusters can be done within a single scan of data

points. For example, it can be done within milliseconds for a few

https://doi.org/10.1145/3366423.3380183
https://doi.org/10.1145/3366423.3380183
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million and scales linearly with a single modern CPU. Yet, the cur-

rent hierarchical clustering techniques use linkage criterion, which

requires a pairwise distance matrix that makes the pre-processing

infeasible for any moderately sized data.

Since our focus is on the interactive data analysis, it is intuitive

to think of ways to generate a hierarchy without pairwise distance

comparisons. One data clustering algorithm that draws our atten-

tion is density peaks [37], which represents cluster centers as points

that are surrounded by neighbors with lower densities in a local

region. In Figure 2, cluster centers are the points with the highest

densities in a local region. Once we identify the cluster center, the

cluster assignment for remaining points can be done by referenc-

ing the same group from their respective nearest neighbor with a

higher density (colored arrows in Figure 2). Clearly, although the

naive calculations of density and nearest higher density neighbor

for each point are to scan the whole sample resulting in total time

complexity of O (n2), it is obviously not necessary since our objec-

tive is to query neighbors. Such observation provides a great room

for efficiency improvement compared to hierarchical clustering

while maintaining the benefit of providing real-time response.

In this paper, we propose a density-based sparse data clustering

algorithm sparse density peaks, an efficient algorithm to compute

density peaks for binary data using Jaccard as distance measure.

Using set similarity measures like Jaccard similarity, we can ap-

proximate the density and distance attributes for each point with

MinHash and Locality Sensitive Hashing (LSH) [17]. We leverage

MinHash and LSH to provide close approximations of the attributes

and — associate challenges at scale — an efficient implementation

in Spark distributed computing framework. The implementation

addresses data skew in similarity search and exploded intermediate

products in neighbor query operations, which are two common

challenges in handling large scale data. This can greatly utilize our

approach in delivering quality results in real-world scenarios, as

shown in our experimental results.

The contributions of this paper are summarized as follows:

(1) A new clustering method called Sparse Density Peaks for cluster-
ing rows in large-scale sparse binary matrices based on their set

similarities. We propose efficient and accurate approximations

based on MinHash and LSH.

(2) A highly scalable distributed implementation of Sparse Density

Peaks using the Spark distributed computing framework. The

implementation addresses the challenges of data distribution

and memory usage in distributed computing.

(3) Experiments demonstrating that our approaches enable a sig-

nificant improvement in accuracy and speed up. These improve-

ments enable real-time interactive clustering via an interactive

user interface with visualizations.

2 RELATEDWORK
Over the last decade, there have been a number of data clustering

algorithms including k-means [29] and variants [33], hierarchical

clustering [42], amongmany others.We refer the reader to a seminal

survey on data clustering [4]. However, none of these approaches

are well-suited for interactive real-time clustering since all are

far too costly to compute after the user interactively changes the

number of clusters or other hyperparameters. For instance,k-means

Figure 2: (a) Illustration of Density Peaks in one dimension
data. Each data contains a density (ρ) attribute and a distance
(δ ) attribute that are used to construct a cluster hierarchy. (b)
The hierarchy is constructed by attaching data points with
their respective nearest neighbor of higher density.

takes roughly O (nmkt ) time where t is the number of iterations

until convergence, k is the number of clusters, n is the number of

data points, andm is the number of attributes (columns). Notice

that while t may be relatively small, both n and m can be quite

large. It is also unstable, highly dependent on the initial starting

centroids, and typically requires multiple runs to obtain a good

clustering. More advanced online clustering methods include the

usage of multi-armed bandit [16, 24, 27] and set cover [9]. While the

t factor does not seem too bad, for large n it can become too costly,

especially when requiring interactive real-time responses that are

typically less than 1/10 of a millisecond. Most of them are also

inappropriate for sparse data. Instead, the proposed sparse density

peaks clustering is designed specifically for such large sparse data.

In particular, sparse density peaks clustering leverages fast and

efficient set similarity measures such as Jaccard similarity that are

more appropriate for such large sparse data. In addition, sparse

density peaks is designed to leverage the sparse structure of the

data by considering only the nonzero entries of the large sparse

matrix. SupposeX is the large sparsen×mmatrix, then by definition

nm ≫ nnz(X), where nnz(X) is the number of nonzeros in X.
More recently, density peaks clustering [37] was proposed, which

represents cluster centers as points that are surrounded by neigh-

bors with lower densities in a local region. The original density

peaks clustering has been applied in neuroscience [31], bioinfor-

matics/gene expression analysis [30], image segmentation [39], key

frame detection [45], among others [31]. Other work has extended

density peaks with heat diffusion [31], fuzzy clustering [5], and even

provided a MapReduce implementation of density peaks [2, 44].
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However, density peaks is infeasible for real-time clustering of

large data as it has a O (n2) time preprocessing step, which also

requires nearly n2 space. Due to the time and space requirements,

density peaks clustering is impractical for use with any data of even

moderate size. Moreover, its density based clustering nature makes

data skew easily happened in neighbor search for sparse data. In

this work, we describe a highly scalable clustering algorithm called

sparse density peaks that addresses the time and space issues of

density peaks to enable real-time clustering of large-scale customer

data. There has been far less work focused on the real-time clus-

tering problem. For real-time clustering, we require a nearly linear

or sub-linear time algorithm. Since the goal is to use the real-time

clustering algorithm for interactive data exploration, it should also

be fast when a user changes the number of clusters.

There is also some work on clustering algorithms that find a

hierarchy of clusters as opposed to a single clustering [36]. In this

work, we focus on obtaining a hierarchy of clusters that can be

interactively explored by the user in real-time. While most exist-

ing methods for this problem require nearly quadratic time (and

space) [36], our approach is able to find a hierarchy of clusters

in near-linear time using MinHash and LSH to approximate the

density and distance computations.

There has also been recent work on parallel clustering algorithms

for shared-memory and distributed architectures [1, 13, 15, 46].

Other work has focused on parallel implementations for GPUs [6].

In our work, we also provide a distributed implementation of our

sparse density peaks clustering algorithm using Spark. Recently,

there has been work on interactive data analysis and visualiza-

tion [19, 22, 23]. The majority of work in this area has focused

mainly on interaction techniques and visual interfaces for exploring

data [14, 21, 26, 38] or tuning parameters of clustering algorithms

and finding the best result sets [7, 25, 43]. In this work, we design

fast and scalable clustering algorithms that can extend the support

of interactive clustering and exploration to large-scale datasets.

3 SPARSE DENSITY PEAKS CLUSTERING
3.1 Density Peaks
Our approach to clustering binary sparse data is inspired by the

concept of Density Peaks (DP) [37]. It has two assumptions: (1) clus-

ter centers are surrounded by neighbors with lower local densities,

and (2) they are relatively more distant to any points with higher

local densities than the other data points. These observations are

illustrated in Figure 2(a)., where cluster centers (i.e. point 3 and

point 9) are the points that are dense within their local regions.

Here, the local density ρi of data point ui is defined as:

ρi =
���
{
uj | dist (ui ,uj ) < dc

}��� (1)

wheredc is the cutoff distance. Theminimumdistance to higher
density points δi for each point is defined as:

δi = min
j :ρi<ρ j

dist (ui ,uj ) (2)

By convention, the point with the largest density is assigned

with the maximum value of δ . Based on these assumptions, DP

computes local density ρi and distance δi for every point and users

can label points with anomalously large δi and ρi as cluster centers.

Algorithm 1 Find Local Density

Input: dist (distance function), dc (cutoff distance)

Output: ρ (density list)

1: for i = 1 : n do
2: ρi = 0

3: for j = 1 : n do
4: if i , j and dist (i, j ) ≤ dc then
5: ρi = ρi + 1

Algorithm 2 Find Minimum Distance of Higher Density Points

Input: dist (distance function), ρ
Output: nn (nearest higher density neighbor list), δ (distance list)

1: for i = 1 : n do
2: δi = ∞
3: nni = null ▷ initialize nearest neighbor

4: for j = 1 : n do
5: if i , j and ρi < ρ j and δi > dist (i, j ) then
6: δi = dist (i, j )
7: nni = j

Algorithm 3 Cluster Assignment

Input: X (cluster centers), nn (list of nearest higher density

neighbor), sortedIndex (list of indexes sorted by ρ)
Output: C (list of cluster labels)

1: for i = 1 : size (X) do
2: C (X (i )) = i ▷ assign cluster labels for centers

3: for i = 1 : size (sortedIndex ) do
4: if C (sortedIndex (i )) == empty then ▷ no cluster labels

5: C (sortedIndex (i )) = C (nn(sortedIndex (i )))

Finding δi also returns each point’s nearest neighbor with
a higher density1 nni for each point. It act as the point’s parent

node in the hierarchy which are useful for cluster assignment. After

choosing a set of cluster centersX, each remaining point is assigned

to the same cluster as its nearest neighbor, in an order of descending

ρ, illustrated in Algorithm 3 and Figure 2(b).

Unlike popular partition-based clustering algorithms like K-

Means, DP completes most of the computations before users start

their analyses. As shown in line 3-5 in Algorithm 3, given the

number of clusters, it only scans the points U once to produce the

clustering results. Still, computing ρ and δ is expensive. Brute force

approaches require measuring the distance between each pair of

points (Algorithm 1 and 2), resulting in an O (n2) time complexity.

3.2 Extensions of Density Peaks
Before proposing our framework for accelerating the density and

distance computations, we first introduce two useful extensions

of DP. We extended these features based on the requirements of

commercial data platforms and the needs of real customers.

Batch processing. Commercial data often comes in a huge vol-

ume, which requires a consistent and long usage of computing

1
Without loss of generality, we use the term nearest neighbor to refer to the nearest
neighbor with a higher density for the remainder of the paper.
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resources. Instead of constructing the density peaks in a single run,

the algorithm can be run in an anytime manner [20] in which the

dataset is pre-processed with interruptions. To be specific, given a

set of points U , to compute the density ρi and distance δi for each
point pi , pi does not need to compare with the wholeU in one time.

Instead, we can splitU into multiple disjoint subsets and compare it

with each subset one by one. Suppose after t-th batches of subsets,

pi obtains a density ρi . When the (t + 1)-th batchUt+1 comes, the

density is updated as follows:

ρit+1 = ρit +
���
{
uj | dist (ui ,uj ) < dc∀uj ∈ Ut+1

}��� (3)

After finishing computing the density ρ for all data points, we

can compute the distance δ batch by batch similarly. Suppose after

t-th batches of subsets, a data point pi obtains a distance δi . When

the (t + 1)-th batchUt+1 comes, the distance is updated as follows:

δit+1 =min(δit , min
j :ρi<ρ j ∀j ∈Ut+1

dist (ui ,uj )) (4)

While the update functions look straightforward as they either

involve only a summation or comparison, they provide huge ad-

vantages for both operations and implementation. First, it allows

the pre-processing to be scheduled. For example, the algorithm

can stop running if the server is busy and resumes when resources

become more available. This enables the infrastructure to allocate

the tasks more efficiently. Second, the pairwise comparisons are

only conducted between a subset and the whole dataset at a time,

which can drastically reduce the number of intermediate results

throughout the computation. The reduce in memory usage can

provide rooms for speed up strategies which we will introduce and

demonstrate in Section 4 and 5.

Hierarchical clustering. As in Algorithm 3 and Figure 2, each

data point is assigned to the same cluster as its nearest neighbor in

descending order of density, which is the same as a hierarchy. The

parent node of a data point is its nearest neighbor and all children

nodes under a parent must have the same cluster label. Therefore, it

is possible to perform clustering again on any cluster (i.e. subtree)

without recomputing the whole pipeline. In practice, this allows

analysts to drill down into a sub-group and discover fine-grained

insights. For example, when one cluster exhibits a unique purchase

behavior towards electronic appliances, analysts can further split

the cluster into sub-groups of mobile phones or television purchases.

We will propose an interactive system that leverages this capability

in Section 5.3.

3.3 MinHash + LSH
As described in Section 3.1, in order to cluster a dataset, DP needs

to estimate local density ρi and distance δi for each point. The time

and memory required for computing the all-pair distances become

untenable as numbers of data points grow. Since computing the

density needs to find all the neighbors within a cutoff distance and

computing the distance requires us to find the nearest neighbor with

a higher density, our thoughts naturally turn to efficient methods

for nearest neighbor search.

Our framework employs a MinHash with Locality-Sensitive

Hashing (LSH) approach [8, 34] for reducing the search space of

neighbors. We first generate a MinHash signature for each data

point (i.e., visitor) that approximates the Jaccard similarity of its

column values (i.e., user behavior). Then, using the MinHash sig-

natures, LSH hashes similar points into the same bucket, so that

we only need to consider points within the same bucket when

estimating the density and distance.

Formally, a MinHash signature is a vector of n MinHash values

(i.e., sketches) [h1 (ui ),h2 (ui ), ...,hn (ui )], such that the similarity

between two points is the probability of MinHash collision between

two signatures (i.e., sim(ui ,uj ) = Pr [hk (ui ) = hk (uj )]). To produce
MinHash signatures that can approximate the weighted set similar-

ity, each MinHash function hk is defined by the smallest element of

a set of columnsTi , under ordering induced by the hashing function
f for weighted set similarity [10]:

hk (ui ) = arдmin
t ∈Ti

− log(x )

wt
, where x ∼ Un(0,1) (5)

After the signature is computed, LSH will partition the signature

vectors into b bands so that each band will have n/b hashes. The

values of hashes become a bucket id, so that if two points are hashed

into the same bucket id, it means that they have at least n/b number

of same hashes (i.e., 1/b MinHash similarity).

3.4 Approximating Density ρ
Given a set of LSH partitions on the MinHash signatures, the query

for a point’s number of neighbors within a cutoff distance dc (i.e.,
the point’s local density ρ) can be illustrated by the following SQL

expression:

SELECT COUNT(DISTINCT points) AS density

WHERE LSH_collision(p,points) >= N

AND distance(p,points) < dc ;

where LSH_collsion measures the number of same hashes both

the query and points share, NB refers to the number of bands in

LSH, N is a user-defined integer, and distance measures the true

distance between the points that rectifies the false positives in the

LSH partitions. For example, if there are 10 bands in the partitions

and dc equals to 0.5, each point will search for neighbors that share

equal or more than 5 LSH buckets. As a result, each point does not

need to compare with all data points (i.e. replace the for loop of

line 4 in Algorithm 1 with the results from the neighbor query)

The observed density will the number of retrieved points whose

distances are within dc .
The reason the density derived from here is called observed is

because the neighbors are queried based on a probabilistic nature

of LSH. LSH might fail to include some neighbors that do not

contain enough collisions but are located within the threshold. To

produce more precise results, the approximated ρ should cover

the estimation of including this missing population as well. The

estimation works as follows. Denote the similarity between two

points as s . The probability that two points share the same LSH

bucket is sr , where r is the number of rows in a LSH band. As the

number of collisions of LSH buckets between two points Nc follows

a binomial distribution with probability equals to sr , the probability
that Nc is greater than N is the cumulative probability function:

P (Nc ≥ N |sr ) =

NB∑
i=N

(
NB
i

)
(sr )i (1 − sr )NB−i

(6)
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Using the example above (dc = 0.5, N = 5 and NB = 10), if each

band has one MinHash signature (r = 1), the probability that points

with s = 0.6 being retrieved equals to 0.834. With the probability

and observed neighbors, we can estimate the total population Ns
using expectation:

E (Ys ) = P (Nc ≥ N |sr ) × Ns (7)

where E (Ys ) is the observed number of points having similarity s
with the queried point.

By summing all Ns obtained from observed points, we can give a

more precise estimation of the density ρ. For example, if the query

returns two points with s = 0.6 and one point with s = 0.5, the

approximated ρ will be
2

0.834 +
1

0.623 = 4.00.

3.5 Approximating Distance δ
Given a set of LSH partitions on MinHash signatures, the query for

the nearest neighbor with a higher density can be illustrated by the

following SQL expression:

SELECT TOP(points) AS nn

WHERE LSH_collision(p,points) >= 1

AND p.density < points.density

ORDER BY distance(p,points) ASC;

Similarly, by querying neighbors by LSH collisions, we can avoid the

search of the whole sample space (i.e. replace line 5 in Algorithm 2

with the results from the neighbor query). Here, we examine all

data points that fall into 1 of the same LSH buckets. We hope that

the nearest neighbor appears among the collected samples. Yet, how

probable is our “hope” correct? We need to estimate the accuracy

of correct results since a wrong δ will impact the cluster quality.

Assume δi and nni exist for each point ui and the retrieved

nearest neighbor ¯nni has the distance ¯δi . The true nearest neighbor
must have a distance that is smaller or equal to ¯nni . Also, its LSH
hashes do not collide with the point being queried. Therefore, the

event that nni cannot be retrieved by the query is formulated as

follows: (1) δi < ¯δi and (2) Nc < 1. Since the only information we

know about nni is that its similarity must be greater or equal to the

similarity of the current query result s̄ , the probability of the event

thus can be bounded as follows:

Accuracy (δi ) = 1 − P (nni , ¯nni )

= P (no LSH collisions between pi and nni )

= 1 − (1 − snn
r )NB > 1 −

∫
1

s̄
(1 − sr )NB

ds (8)

The integral calculates the sum of chances that no LSH buckets

collide across NB bands for any possible outcome that has a similar-

ity greater than the queried nearest neighbor. It only contains one

variable s so that the integral can be solved by trapezoid rule [12].

Once we can obtain an accuracy for the nearest neighbor being

retrieved, we can identify the points which have low accuracies

and further process them with a correction approach.

As a result, the next question is how can we handle the points

that have no nearest neighbor returned from the query or have

a low value of accuracy. Since precisely correcting these points

requires comparing them to the whole dataset which is inefficient,

we rely on a heuristics that cluster centers are normally dense. We

Figure 3: General pipeline of attribute calculations. A many
to many data flow between partitions in different stages
means that a re-partition occurs.

compare these points with a fixed number of most dense points

(e.g. the top 1000 points with highest densities). The intuition is

that these dense points are more likely to be the cluster centers

without any prior information of nearest neighbors and they are

more likely to return a nearest neighbor for each queried point. We

will show this approach provide good effectiveness in Section 5.

4 IMPLEMENTATION
Given a large number of data, millions of densities and distances

have to be computed. Yet, the querying operations can be run inde-

pendently within each stage of density and distance calculations

for each point. To leverage the parallel nature of these computa-

tions, we implement the framework using Spark. Like MapReduce,

Spark is a distributed cluster computing framework and it also

provides SQL query languages on structured data. For distributed

computing frameworks, optimization for several types of queries

plays an important role in speed and performance. To provide clear

motivations and explanations of our query strategies, we first give

an overview of the Spark architecture and main requirements for

speed up strategies.

4.1 End-to-end Performance Overview
In Spark architecture, data are distributed across different partitions.

All partitions execute the tasks concurrently until there is a need

to re-partition the data, which is called a shuffle. The shuffle step
is needed for a JOIN or GROUP BY operation since the data with

the same keys have to reside in the same partition. For example, to

compute the MinHash signatures and LSH bucket hashes, each data

point only needs to calculate its hash values so that no re-partition

is needed. However, to find the neighbors and calculate the density

or distance, it requires a join on data points using hashes as the

key and then a group by on user ID to calculate the counts or find

out the nearest neighbor. These steps often result in a potential

explosion of intermediate results and uneven distribution of data

among the partitions, which are the main bottlenecks among the

tasks in computing the density peaks. While Spark automatically

generates an execution plan to reduce the possible number of shuffle

operations, we list two design strategies when considering our

implementation strategies:
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Figure 4: Join, filter, and group by conditions in calculating density.

Figure 5: Join, filter, and group by conditions in calculating distance.

G1 Reduce the number of duplicate keys when joining or
grouping two tables. When two tables are joined with du-

plicate keys, the number of intermediate products will grow

quadratically which produces a high memory and network

pressure to the partitions. For Spark, one of its efficiency comes

from its ability to process data within the memory of the com-

puting nodes. Although using memory provides a much faster

runtime than saving and retrieving data through hard disk,

the amount of memory available is often much smaller. If the

amount of joined data exceeds the available memory, Spark

will spill the joined data to hard disk first before applying fur-

ther tasks, which will drastically slow down the computations.

Since only joining data by a subset of hashes will cause highly

similar pairs to have multiple collisions, we should introduce

more criteria to further reduce the number of duplicate keys

to reduce these unnecessary collisions.

G2 Ensure an even distribution of data among partitions.
Since the partitions run concurrently and wait until all parti-

tions finish the tasks, it is important to make sure all partitions

share a similar amount of data so that the tasks will not be

stuck by a single partition.

4.2 Join-Filter-Group By based Algorithm
Our calculations on density and distance both have a similar pipeline

containing join, filter, and group by operations (Figure 3). First, all

data points generate a set of LSH buckets as hashes. Having one

column of ID and one column of hashes, the table performs a join

using the hashes as the key to collect collided user pairs. Then, the

pipeline undergoes a filter operation to remove ineligible pairs such

as duplicates or pairs exceeding the cutoff distance. Finally, to calcu-

late the attributes, it performs a group by operation using user ID as

the key and aggregates the groups by count or minimum distance

to collect ρ or δ respectively. Since these operations are performed
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Figure 6: Illustration of salting techniques in join and group
by operations. The goal is to split data with same key values
into a different partitions.

in a distributed system, the data need to be re-partitioned during

the self-join and group by steps. We now provide more details about

how we compute density and distance.

Density (ρ) calculations. The SQL expression in Section 3.4

can be fit into the pipeline by mapping the WHERE clause involving

LSH_collisions into the join operation, the WHERE clause involv-
ing distance into the filter operation, and the COUNT aggregation
into the group by objects. To apply the condition of having more

than a number of hashes collisions as the keys in the join operation,

our goal is to reduce the number of duplicated joined products from

highly similar pairs since they share many same hash values (G1),
we can directly use the combination of hashes as the keys in the

join operation (Figure 4). For example, if we have 10 hashes and

would like to get the user pairs that have more than 5 collisions,

we can generate a table of users with their C10

5
combinations of

LSH buckets in separate rows. As a result, the joined user pairs are

guaranteed to have at least 5 LSH collisions and the pairs having 5

collisions will only be joined once.

Distance (δ ) calculations. Similarly, the SQL expression in Sec-

tion 3.5 can be fit into the pipeline by mapping the whole WHERE
clauses into the join operation, the density comparisons into the

filter operation, and the MIN(distance) aggregation into the group
by objects. Since we want to join each data with candidates which

have at least one hashes collision and also higher densities, in addi-

tion to LSH hashes, we create a new column that bins the density for

each user into their corresponding quantile (with the approxQuan-
tile method in Spark that uses the Greenwald-Khanna algorithm

[18]) and use it as the key in the join operation. Once the quantile

column is computed, we create a new table that transforms the

quantile into a list of smaller or equal quantiles for each data (Table

B in Figure 5). This is to enable each data row (Table A in Figure 5)

to be joined not only the candidates with the same quantile but also

the ones with higher density quantiles. Once the join is completed,

the distances will be fetched by performing a group by operation

using the data from the original table.

Batching Processing. In Section 3.2, we illustrate that our ap-

proach allows data to update its density and distance whenever

they are compared with a new subset of data. These can be easily

done by replacing one side of the join with the subset in Figure 4

and 5. For density computation, the table join by hashes is done

between the table containing all data points and the table contain-

ing the subset of points. By joining these tables and performing

the group by operation by the IDs from the table with all data (i.e.

ID.A are the IDs from the whole dataset and ID.B are the IDs from

the subset in Figure 4), the count obtained will be the density of

points collected from the subset, which can be added to the existing

density results. For distance computation, we can replace the Table

B in Figure 5 and perform similar operations. The nearest neighbor

obtained from the subset can be compared with the current nearest

neighbor.

4.3 Speed Up Strategies Addressing Data Skew
The major obstacle that hinders our implementation to increase

the concurrency of parallelism in the system level (G2) is the data
skew that happens commonly in real data (Figure 1). This problem

is reflected in two stages of our pipeline. First, if many data have

similar sets of attributes, they will share many common LSH hash

values. It means that when the data are joined with these buckets

(Figure 3(a)), there will be a small number of partitions accommodat-

ing the majority of joined intermediate products, leaving few tasks

running for a long time in this stage. Secondly, after the join and

filter operation, some data may have lots of candidates to proceed

to the group by stage. For example, data points with small density

will have lots of potential neighbors to compare with. Therefore,

some partitions need to accommodate a disproportionately large

number of data to calculate the aggregated results. This problem

exists in all distributed computing frameworks like MapReduce

and Flint as data are shuffled among different partitions. To ad-

dress these problems, we apply a technique called “salting”, which

is about changing the join or group by keys to redistribute data

among partitions evenly.

For join operations between two tables, the salting technique

works as follows. On one side of the table, we replicate it n times

by creating a new key column where the value lies between 0 and

n. On the other side, we add a new key column with random values

between 0 and n. Note that we do not replicate the table on this side.

Then, we join these two tables using the new column and column

of hashes together as the keys. In this case, the rows associated

with the same original hash values, which were supposed to be put

into the same partition before, are now distributed into n partitions

created from the replicates (Figure 6(a)). The figure illustrates that

the original join result is split into multiple partitions.

For group by operations, the salting technique works by using

one more group by stage (Figure 6(b)). Again, we add a new key

columnwith random values. Then, we perform a group by operation

using both as the keys and aggregate the groups with COUNT for

density and MIN for distance. After that, we perform a group by

operation using the original key and finally we aggregate the groups

with SUM(COUNT) for density and MIN for distance.



WWW ’20, April 20–24, 2020, Taipei, Taiwan Chan, et al.

Table 1: The table shows the clustering quality in terms of Rand Index of sparse density peaks vs. some state-of-the-art clus-
tering algorithms using several common distance measures.

Jaccard Distance L1 (Manhattan) Distance L2 (Euclidean) Distance

Dataset DP approx. (DP
approx.
no correction) DPexact K Medoid Hierarchical DPexact K Means Hierarchical DPexact K Means Hierarchical

Classic 0.81 (0.71) 0.83 0.82 0.82 0.63 0.71 0.78 0.77 0.71 0.77

last.fm 0.71 (0.69) 0.71 0.71 0.68 0.57 0.65 0.63 0.57 0.52 0.55

MovieLens 0.72 (0.65) 0.72 0.56 0.62 0.57 0.55 0.45 0.55 0.55 0.42

5 EVALUATIONS
In this section, we conduct both the quantitative experiments on

the performance of the clustering pipeline and the qualitative visual

analysis of the clustering results. Our goal is to demonstrate:

(1) Our sketching-based approach to computing density peaks

achieves a close approximation to the original result.

(2) Our pipeline contributes meaningful performance improve-

ment. Altogether, we achieve an almost 20× speed up and main-

tain a low memory environment.

(3) The improved scalability enables a new visual analytics sys-

tem on real industrial datasets. Our marketing experts are able

to discover new customer segments using the functionalities

provided by the system.

Dataset. For evaluating scalability, we experiment on two pub-

lic online customer behavior datasets. The first dataset Instacart
includes 3019354 visitors with 49677 unique purchase attributes.

The second dataset Retailrocket includes 1407580 visitors with
270766 shopping behavior attributes. For evaluating clustering qual-

ity, we experiment on sparse binary datasets with ground truth

group labels. The first dataset Classic consists of 7095 documents

and 6134 unique words with four document categories. The second

dataset last.fm consists of 947 users with 13413 songs listene to.

We label the users with the most listened genre of songs (9 genres

in total). The final dataset MovieLens consists of 1000 users with
4465 unique ratings on 1700 movies. We label the users with the

most highly rated genre of movies (18 genres in total).

Experimental setup. We report results on a Hadoop cluster

with 10 nodes and each node has four AMD Opteron 6276 2.3

GHz CPUs with 256GB of RAM. We report runtime averages from

multiple trials. Without any specifications, our LSH hash tables

contain 4 bands with 1 MinHash signature in each band (i.e., 4 hash

tables) and we join users with at least 1 LSH bucket collision in

both density and distance calculations. We fix the cutoff distance

of DP to 0.5.

5.1 Quality
In this section, we evaluate the clustering quality through compar-

ative experiments against alternatives and assess the trade-offs of

resources for core pipeline parameters. We use the Rand Index [35]

to measure the accuracy of clusters with ground truth labels.

Comparison against alternatives. We compare the cluster-

ing quality of our algorithm to several state-of-the-art clustering

algorithms with careful tuning of parameters under weighted Jac-

card distance and two common distance measures in three datasets.

DP approx. and DP
approx.
no correction are Density Peaks that use MinHash

Figure 7: Effect on varying (a) cutoff distancedc and; (b) num-
ber of hashes on accuracy.

and LSH to approximate the attributes with and without the cor-

rections from Equation 7 and 8 respectively. DPexact are Density

Peaks that use brute force approaches to obtain the exact values. We

can see that the clustering quality after rectifying the density and

distance attributes becomes much closer to the brute force results.

Also, we demonstrate the advantage of using set similarity mea-

sures in clustering sparse binary data. Noted that we do not claim

that DP is superior to other state-of-the-art clustering algorithms

in terms of accuracy. Rather, we want to show that it is competitive

with those algorithms while having the ability to provide real-time

responses with a relatively lower cost of pre-processing, which

justifies our choice of its use.

Effect of pipeline parameters. To demonstrate that the accu-

racy of sparse density peaks is not sensitive to the parameter choices,

we use the Classic dataset to generate four clusters with varying

cutoff distance dc and measure the Rand Index obtained. As shown

in Figure 7(a), the choices of dc is very wide which corroborates

the original density peaks results [37].

On the other hand, we vary the number of hashes and measure

the Rand Index obtained. As shown in Figure 7(b), we can achieve

a stable accuracy with varied numbers of hashes. The reason is

that although a small number of hashes will lower the accuracy for

the attributes computed from the query, the correction stage will

accommodate these points to generate a closer approximation.

End-to-end evaluation. We report the run time breakdown of

the baseline LSH implementation of the pipeline and the effects of

salting optimizations. We use the Retailrocket 1.4 million cus-

tomers to test the runtime on density and distance computation.
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Figure 8: Effect of salting in computing density and distance.

Figure 9: Effect of LSH parameter on similarity join runtime
and memory consumption.

Figure 10: Effect of batch processing on similarity join run-
time and memory consumption.

Figure 8 shows the cumulative runtime after applying each opti-

mizations. In general, it scales well and removes 60% of the time

compared with using pure LSH. It shows that shuffled data are more

evenly spread and are less likely to have the whole cluster waiting

for few numbers of partition to complete.

5.2 Scalability
In this section, we evaluate the effect of trade-offs between memory

and run time and demonstrate that there is an optimal setup be-

tween one-off processing and batch processing. Also, we evaluate

against alternative set similarity search algorithms.

LSH parameters. We report the effect of runtime and memory

usage of various numbers of hashes in Figure 9. We compute all data

from Instacart (i.e., 3 million customers) in a single batch. We

set a timeout of 2 hours. It can be seen that the memory consump-

tion scales linearly for both computations, while the runtime of

distance computation grows more drastically. The reason is related

to the optimization of Spark. Spark tries to hold the shuffled data

within the memory of each partition but when the memory is full,

it transfers the remaining data to hard disk which causes a highly

I/O cost. Also, while the chances of the join between points with

larger distance are enabled, the number of duplicated join between

similar points will increase as well, causing larger shuffled data.

Table 2: Index + Query Time for LSH and set similarity joins. Min-

hash LSH incurs a 6.29% false negative rate while enabling up to

19.6× speedup.

Algorithm Index + Query (s) Speedup

DPapprox. MinHash LSH 31.8 -

MLib LSH 186.6 5.88×

DPexact VernicaJoin [41] 308 9.69×

MRGroupJoin [11] 89.831 2.83×

Hierarchical AllPairs [3] 633 19.6×

Batch processing.We report the effect of runtime and memory

usage of varying the number of batches in Figure 10, using the same

data from Instacart. We can observe that splitting the data into

different batches provides a remedy for the challenges shown in the

above experiment of increasing LSH parameters. Thememory usage

can be decreased drastically by increasing the number of batches.

Although increasing the number of batches to a further extent will

linearly increase the runtime since it increases the number of shuffle

stages, we demonstrate that there exists an equilibrium between

increasing the number of shuffle stages and the memory usage.

Comparison against alternatives.We evaluate against alter-

native similarity computation algorithms that help generate a clus-

ter hierarchy in Density Peaks and hierarchical clustering using

Retailrocket data. We compare the query performance of our

MinHash LSH to 1) an open source Spark MLib LSH library
2
2)

two state-of-the-art MapReduce exact similarity join algorithms:

VerincaJoin [41] and MRGroupJoin [11] 3) all pairs similarity join

in MapReduce [3]. We set the similarity to 0.5 and the number of

hashes to 4 which results in a 6.29% false-negative rate compared

with exact similarity joins. In return, our MinHash LSH enables

5.88× speedup to MLib LSH and 2.83× and 9.69× speedup against

exact similarity join. Also, our choices of using density peaks allow

a 19.6X speedup compared with using Hierarchical clustering as

the real-time clustering solution. These results show that LSH are

more effective than pruning strategies that leverage the similarity

threshold when the threshold is moderate and MinHash signatures

perform better than general LSH on sparse and binary data [40].

5.3 Qualitative Evaluation
Our accelerated clustering algorithm opens new opportunities for

developing interactive tools for audience management at scale. For

the use case of digital marketing, we propose a system to help mar-

keting analysts cluster online visitors. Our development of the user

interface followed an iterative, user-centered design process [32].

We iteratively refined the design through demos, discussions, and

semi-structured interviews with marketers who analyze visitor be-

havior logs for large online retail stores. Based on the feedback,

we identified three key design needs: (1) controls for trying our

different clustering parameters, (2) visualizations for interpreting a

group, and (3) support for re-splitting a group. The user interface

of the web application is shown in Figure 11.

2
https://spark.apache.org/mllib/
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Figure 11: Proposed user interface providing (1) controls for clustering parameters, (2) further split of clusters, and (3) support
for combining clusters and visualizations for interpreting a cluster. This figure illustrates a synthetic online visitor dataset.

To qualitatively evaluate the effectiveness of our system, we

conducted a case study with two analysts who worked at a large

company that provides digital marketing services, , in which they

used our system to explore a real dataset of over 30 million online

visitors. First, the algorithm produced the groups by the analysts’

specifications and visually presented the population and user at-

tribute information of each group. By trying different customer

segmentation results by specifying a different number of clusters

(Figure 11(1)), the analysts quickly discovered a meaningful cluster

result that segmented online customers by three interest groups on

specific purchasing product categories (i.e. multi-category, major

appliances, and home theater). Furthermore, the analysts inspected

each group’s popular attributes, influential attributes, and distin-

guishing attributes compared to its parent group. From the results,

they discovered that some attributes within each group were very

diverse. Thus they increased the number of clusters to get more

fine-grained similar groups. For example, the analysts selected a

group of customers who were labeled as “frequent email openers”

for further analysis (Figure 11(2)). They further split this group and

found that the influential attributes in the sub-groups were more

geographically related, which were useful to run regional email

campaigns. They merged three sub-groups that contain customers

on the east coast and saved the resulted 78,000 visitors for sending

region aware marketing campaign (Figure 11(3)).

In summary, our proposed system allows analysts to quickly

experiment with different settings and identify groups of interest

from clustering results. We believe such user experience will inspire

new audience management technologies and commercial solutions

that were not possible before.

6 CONCLUSION
In this paper, we have proposed a novel clustering algorithm sparse
density peaks for real-time cluster exploration on sparse binary data.

Our approach constructs a cluster assignment hierarchy for data

efficiently by leveraging MinHash and LSH in Spark distributed

computing framework. While directly applying LSH will miss the

true nearest neighbors and provide a biased estimation to the at-

tributes of density peaks, we have provided more accurate estima-

tion measures and an additional correction step to provide a better

approximation. Also, a straightforward implementation of LSH

will fail to scale beyond an increased size of data and an increased

number of hashes. Thereby, we have introduced efficient salting

strategies to ensure even parallelism of data in the distributed plat-

form. To demonstrate the application of the approach in real-life

scenarios, we have designed a user interface that utilizes the results

to address real-life business decision making. We believe these re-

sults will benefit data scientists to design an end-to-end clustering

pipeline for exploring industry scale online user behavior data.
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