
2023 IEEE International Conference on Big Data (BigData)

979-8-3503-2445-7/23/$31.00 ©2023 IEEE 423

Discovery and Matching Numerical Attributes in
Data Lakes

Pattara Sukprasert
Northwestern University

pattara@u.northwestern.edu

Gromit Yeuk-Yin Chan
Adobe Research

gromit.chan@adobe.com

Ryan A. Rossi
Adobe Research

ryrossi@adobe.com

Fan Du
Databricks

fan.du@databricks.com

Eunyee Koh
Adobe Research

eunyee@adobe.com

Abstract—In data platforms with thousands of data tables
available for exploration, users often need to retrieve some data
based on limited knowledge of the data sources and schema.
The task that automates retrieving attributes from an online
data lake given a set of entities from users is called “entity
augmentation”. The key for successful entity augmentation is
an accurate construction of semantic relationships between data
tables. Current techniques either focus on retrieving categorical
values or numerical values with pre-defined rules. Further, they
assume there are meta-data available for each table, such as texts
and tags. In this paper, we introduce a semantic graph for nu-
merical data augmentation that (i) matches columns with similar
semantic relationships without any meta-data from the tables; (ii)
infer the conversion rules among different numerical columns
based on the values. The approach is designed to be highly
scalable and parallel for large-scale data lakes with millions of
large datasets. We also propose efficient algorithms to construct
the semantic graph on a distributed computing environment
(i.e. Spark) and conduct numerical data augmentation using
the graph. Through comprehensive experiments on real-world
datasets, the approach is shown to (1) achieve better accuracy
on semantic matches and value conversions and (2) scales to the
tractable computation time on large-scale data. Finally, we also
present an interface to apply the semantic graph for real-world
scenarios.

Index Terms—Data lake, datasets, data discovery, attribute
discovery

I. INTRODUCTION

Data lakes have recently received considerable attention [1]–
[8] due to their key advantages in being schema-agnostic
and easy data access across a large variety of structured and
unstructured data [9]–[13]. Since data lakes consists of a
massive amount of datasets, even simple tasks such as finding
data tables or attributes that are similar to a given data table
or an attribute of interest to a user remains fundamentally
challenging problems [14]–[19]. In recent years, there have
been a proliferation of data tables and datasets on the web [20],
[21]. It was estimated in 2008 that 14.1 billion data tables exist
on the internet [22], and has increased exponentially over the
last decade.

The abundance and availability of large data lakes has
given rise to many important and challenging tasks. Previ-

The work was done while P.S. was an intern at Adobe Research.
The work was done while F.D. was a research scientist at Adobe Research.

Fig. 1. Overview of discovering numerical attributes in data lake. Given a set
of records and an attribute (e.g. price), the goal is to (A) identify the attributes
and values to output to the result and (B) identify proper number conversion
without any pre-defined rules.

ous works have focused on entity linking [23]–[27], column
type prediction [28]–[30], dataset discovery [14]–[16], [31],
[32], data table understanding [4], data lake navigation [33],
among many others [17]–[19]. Many of these approaches
require additional meta-data [13], [20] such as text [4], [34],
[35], knowledge graphs [23], [36], or even large knowledge
bases [37]. Other work requires large amounts of labeled
training data [29], [30], which is sometimes even collected
via crowdsourcing [38].

In [39], Google’s Dataset Search was discussed.1 There is
an encouragement to improve the quality of meta-data, which
in turns will improve the searchability of data sets. While
search for data on meta-data rich sources can be more efficient,
the volume of data we generate is higher than our ability to
annotate the data. To facilitate this, an approach that does not
require meta-data is needed. The use cases here range from
data set search, entity search, attribute search, etc. The general
research question is what can we query efficiently without the
help of meta-data and pre-defined rules?

Specifically, we study the problem of discovering an at-
tribute from data sources (Figure 1). Given a set of records
(e.g. products), a user would like to search for the values of

1https://datasetsearch.research.google.com/

20
23

 IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e 

on
 B

ig
 D

at
a 

(B
ig

D
at

a)
 | 

97
9-

8-
35

03
-2

44
5-

7/
23

/$
31

.0
0 

©
20

23
 IE

EE
 | 

D
O

I: 
10

.1
10

9/
B

ig
D

at
a5

90
44

.2
02

3.
10

38
60

80

Authorized licensed use limited to: Adobe Systems via Goldmine. Downloaded on January 29,2024 at 23:45:47 UTC from IEEE Xplore.  Restrictions apply. 



424

an attribute (e.g. price), assuming the information are scattered
around the datasets in the data lake. Our goal is to first retrieve
the values from multiple tables. Afterward, even if we acquire
the values from the correct destination, we often need to
standardize the values. This is usual when attributes like prices
in different columns have different but semantically similar
meanings like currencies. Yet, these semantics are often not
defined explicitly so that we need to identify without hard-
coded conversions.

Thus, we introduce a semantic graph for entity augmentation
that identities relevant columns without requiring meta-data
from the tables and automatically infers the conversion rules
for the different numerical columns based on the observed
values. Despite the importance of these problems, existing
techniques either focus on retrieving categorical values or
numerical values with pre-defined rules [34]. Furthermore,
most of these works also assume the availability of meta-data
for each table [13], [40], [41] or even large knowledge bases
with matching entities [37]. In addition, our approach infers
the conversion rules among the different numerical columns
based on the values. These conversion rules aid explainability
and user verification as well.

The key contributions of this work are as follows:
(1) A novel semantic graph-based method for efficient discov-
ery of the most relevant data tables on the web (in sub-linear
time) with respect to a users query, along with an approach
that infers the missing values of a numerical column via the
relevant data tables returned. Notably, the approach also infers
the data transformation rules among the different numerical
columns from various datasets in the online data lake.
(2) A highly scalable parallel implementation of the approach
that supports solving these important problems over large-
scale data lakes consisting of millions of large datasets. The
method utilizes hashing strategies to be both fast and scalable
for interactive entity augmentation on large online data lakes.
(3) Comprehensive experiments demonstrate our approach’s
effectiveness as it achieves a significant speed-up with accu-
racy comparable to the state-of-the-art. This naturally enables
the approach to be amenable for real-time interactive augmen-
tation and missing value inference via relevant data tables on
the web.

The remainder of the paper is organized as follows: Sec-
tion II summarizes related work whereas Section III formally
introduces the problem investigated in our work. Our approach
is presented in Section IV and the scalable computational
framework is described in Section V. Comprehensive exper-
iments demonstrating the effectiveness of our approach are
provided in Section VI. Section VII is the conclusion. Finally,
Section VIII discusses potential future works.

II. RELATED WORK

The amount of datasets available on the web is increas-
ingly drastically, and searching them is becoming ever more
important [42]. In recent years, there have been many works
that leverage the large amount of tables and datasets on the

web [20], [43], [44] for a variety of important problems,
including truth discovery [45], synonym discovery [46], data
transformation discovery [47], detecting data schemata [48],
key discovery from Wikipedia tables [18], among others [49].
Other works have used web tables to extract product spec-
ifications [50] and discovery new entities [51]. Using web
tables to augment cross-domain knowledge bases has also
been studied [52]. See [53] for a recent survey on extracting,
retrieving, and augmenting web tables.

Data lakes are becoming increasingly popular as they pro-
vide a schema-independent repository of data files [54]–[57].
Such data lakes have many data access benefits to users.
However, finding the appropriate data in such large-scale data
lakes remains a challenge [58]–[60]. One recent work focused
on navigation [33] of such data lakes using hierarchy [41].
Zhang et al. [7] introduced search and management tech-
niques for the Jupyter Notebook data science platform to help
users find training data and features for their models [61].
Some recent work focused on integrating data from relational
datasets via embeddings [62]. Similarly, knowledge graphs
have also been leveraged to improve various tasks over data
lakes [29], [60]. Another recent work developed visualization
tools to aid some of these tasks [40]. Sherlock [29] and
Sato [30] are two recent approaches for detecting the types
of columns in data tables. In particular, Sherlock [29] uses
a large corpus to train a deep learning model for classifying
the type of a column in a table. This approach works well
on highly represented columns, but fails for column types that
are not widely available in the training corpus. More recently,
Sato [30] combines a deep learning model that uses column
values with a topic model to obtain the appropriate context
for better column-type inference. For a recent survey on data
lakes, see [63].

The semantic graph derived in our work can be viewed as a
data structure for schema matching. The problem was studied
extensively. For further details on these works, see the sur-
vey [64]. There has also been work on fact checking statistical
claims via databases [65], finding constraint violations [66],
[67], and even resolving spatial inconsistencies [68]. Some
other work has focused on learning over uncleaned data [69].
There have also been many works on fairness clustering [70],
[71]. There have also been work on measuring data qual-
ity [72]. Other recent work has focused on automatically ver-
ifying the quality of data [73]. Recently, some work explored
column data augmentation using knowledge graphs [74]. In
particular, that work developed a tool called CAVA [74] that
helps analysts augment data by suggesting additional related
columns. However, they use most common columns as a proxy
to most related columns in the task. It is not clear that this is
a good proxy.

In this paper, we introduce a semantic graph for entity aug-
mentation that identities relevant columns without requiring
meta-data from the tables and automatically infers the con-
version rules for the different numerical columns based on the
observed values. Despite the importance of these problems, ex-
isting techniques either focus on retrieving categorical values

Authorized licensed use limited to: Adobe Systems via Goldmine. Downloaded on January 29,2024 at 23:45:47 UTC from IEEE Xplore.  Restrictions apply. 



425

or numerical values with pre-defined rules [34]. Furthermore,
most of these works also assume the availability of meta-data
for each table [13], [40], [41]. The work that is most related
to ours is Infogather+ [34]. They do a semantic matching
as well as numeric attribute discovery. Their limitation is
that they assume the conversion rules are known and their
implementation is mainly for web tables.

III. PROBLEM FORMULATION

A. Data Model

Our work mainly focuses on acquiring numerical values
based on some categorical keys. Therefore, our input can be
formulated as a query table Q(K,A), where K is the key
column with categorical attributes and A is the augmenting
column with numerical attributes. The key column is populated
while the the augmenting column is empty. Noted that the key
column does not need to have a header defined.

In each table in the data lake T ∈ T , we assume it is a
relation T (K,B) where K is a set of categorical columns with
K as possible keys and B is a set of numerical columns with
B as possible referenced values for augmentation. We assume
the tables are independent to each other so that the values
are not a combination from multiple tables. Together, the data
discovery problem can be described as an Augmentation by
Attribute Name (ABA) problem as follows:

Definition 1. Augmentation by Attribute Name (ABA):
Given a query table Q(K,A) and a set of tables 〈T (K,B)〉 ∈
T , predict the value of each query record q ∈ Q on attribute
A.

Unlike other ABA problems on specific kinds of tables such
as web tables [34], we do not assume there are any meta data
like URLs or relevant texts surrounding the tables. In the later
discussion, we describe how to acquire similar contexts based
on the table itself.

B. Problem Statement

While ABA describes the data discovery problem in general,
the numerical data discovery scenario concerning our work
could be consolidated into a more precise problem statement.
For each record in the query table q ∈ Q, the numerical value
predicted q[Q.A] on attribute A is determined by first finding
a matched table T ∈ T that contains the values we want, then
extracting the records T ′ from T with the same key q[Q.K],
and finally predict the value v for q[Q.A] from T ′.B with a
score s. The whole problem thus can be defined as follows:

Definition 2. Number Augmentation by Attribute Name
(NABA): For each record q in the query table Q, find
a matched table T , obtain a subset of records T ′ =
{t ∈ T |q[Q.K] = t[T.K]}, and return a predicted value v =
r(T ′.B), where r is a function that semantically standardizes
the predicted values across the records in Q with a score s
for each value.

To standardize the values in the query table, the function r
should depend on the records in the query table, and take some

of the records as references. For example, the values obtained
from a monthly sales record should sum up when presented
with values obtained from a yearly sales record, or a price in
USD currency should multiply by 7.8 when presented with
prices in HKD currency. We define these conversions together
as follows:

T.B = θ ×AGG(T ′.B) (1)

where θ is a constant for multiplication and AGG(·) is an
aggregation function such as SUM, MEAN, or MIN.

C. Semantic Graph

To standardize values among different tables in the data
lake, we need to understand the semantic relationships among
the columns in the tables. Once the relationships are estab-
lished, a semantic graph G is formed and enables us to perform
the value augmentation. Our goal is to construct G (Figure 2)
with the following properties:
1) Nodes: Each node represents a possible key value pair

columns in a table, i.e., T (K,B). For a table with m
categorical columns and n numerical columns, there will
be m × n nodes corresponding to this table created. The
actual nodes will be based on the group-by aggregation
of T (K,B) on T.K which we will explain later, but they
will still represent a relation with one key column and one
numerical column.

2) Edges: An edge is established between two nodes T (K,B)
and T ′(K ′, B′) iff T.K and T ′.K ′ belong to the same
type of entity and T.B and T ′.B′ belong to the same
attribute of those entities. The edge encodes the conversion
rules T.B ↔ T ′.B′ with respect to the key columns and
contains a weight inversely proportional to the confidence
of the conversion rule inferred. We will discuss the use of
relationships and weights in the query processing steps in
the following sections.

D. Data Preprocessing

To facilitate the construction of semantic graph, as well as
bridging the gaps between our problem statement with real
data, we conduct two preprocessing steps to on the data tables:
detecting types of columns and entity matching. Note that there
are several ways to achieve similar results, and we leave the
discussion of best approaches in future work.
Detecting Types of Columns. To determine whether each
column is a key column or a numerical column, we simply
check if all entries can be casted to numbers, (e.g., using
toDouble).
Entity Matching. In the ongoing discussions, there are some
scenarios where we need to determine whether the columns
are similar from different tables regardless of the values in the
columns, for the purpose of efficient computations. We use
pre-trained word embeddings (i.e., FastText [75]) to transform
the column names into real-valued vectors and group similar
vectors with Locality Sensitive Hashing (LSH). Without the
loss of generality, the equality between columns’ entities (i.e.,
T.K = T ′.K ′ or T.B = T ′.B′) refers to the equality of hash

Authorized licensed use limited to: Adobe Systems via Goldmine. Downloaded on January 29,2024 at 23:45:47 UTC from IEEE Xplore.  Restrictions apply. 



426

Fig. 2. Semantic graph constructed in the data lake. The nodes represent a key value pair obtained from any two columns from the same table in the data
lake. An edge is constructed when two nodes can form a semantic relationship on the numerical columns between the nodes. These edges can be constructed
by inferring the relationships between records with same keys (K edges) or between the context columns attached on the nodes (C edges).

values of the columns’ embeddings throughout the remaining
discussions.

IV. SEMANTIC GRAPH CONSTRUCTION

Recall that the use of the semantic graph is to connect the
tables when the keys and values from the same entities are
scattered among different tables. In the following discussion,
we will describe two staged approaches to discover the con-
nections (i.e., edges) among the column pairs (i.e., nodes).
Then, we will present the algorithms to efficiently compute
them.

A. Key Match Approach

Given a set of key-value relations T (K,B) from the tables
in the data lake, one way to connect them is to join the
relations by their key columns, and then among the joined
records where t[T.K] = t′[T ′.K ′], we try to see if the
values between the numerical columns can establish some
kinds of semantic relationships. Some examples of semantic
relationships can be found as follows (Figure 3):
1) One-to-one: The most straightforward relationship is that

the numerical values between the joined records are the
same (Figure 3(A)). When keys from both nodes are
selected, we only need to return the values.

2) Linear Dependence: In situations like currency conver-
sions, the numerical values exhibit some linear relation-
ships between the relations (Figure 3(B)). We say that two
nodes are linearly dependent if there exists a constant α
that t[T.B] = αt′[T ′.B′] for the joined records t, t′.

3) Relationships After Aggregation: Some situations like
monthly and yearly records require us to do a group-by to
identify the relationships (Figure 3(C)). When keys from
these relations are selected, we can pick the aggregation
methods that result in the connections of the nodes.

The above-mentioned relationships can exist together. For
example, the relationship between a monthly sales record in
USD and a yearly sales record in HKD is a linear dependence
after group-by operations. Also, a one-to-one relationship is

a linear dependence with slope equals to one. To generalize
the relationship annotations, we define the nodes as possible
results of T (K,B) after group-by aggregations (Figure 3(C)).
For example, a numerical column in a node now represents
values of the MEAN of the original numerical column based on
the keys from a categorical column in a table. To be specific,
we define the nodes in the semantic graph as follows.

Definition 3. A node in the semantic graph encodes a relation
T(K,B) formed by a numerical column T.B from a table from
the data lake after a group-by aggregation based on the keys
from a categorical column T.K.

Each of the newly constructed nodes is representing a table
with two columns T (K,B). The key column’s values will
be unique in each node. This is actually an assumption in the

Fig. 3. Common examples of semantic relationships of key matched columns:
(A) one-to-one relationships; (B) linear dependence, and; (C) relationships
after aggregations.

Authorized licensed use limited to: Adobe Systems via Goldmine. Downloaded on January 29,2024 at 23:45:47 UTC from IEEE Xplore.  Restrictions apply. 



427

ABA problem in Definition 1. We only reduce the many-to-one
(or many-to-many) relationships to one-to-one relationships
with group-by aggregations to make the assumption holds.
For a slight optimization in implementation, we can detect if
the keys in the column are unique before generating multiple
tables with aggregated values.

Once the nodes are defined in such settings, we can detect
if there is any relationship by measuring the linear dependence
(i.e., y = θ × x) between the joined values between two
nodes. To achieve this, we can use linear regression solver and
enforce the intercept to be zero. Then we use the coefficient
of determination as the weight w of the edge as follows:

w = R2 = 1−
∑
i(yi − θ × xi)2∑

i(yi − y)
(2)

where y is the average over yi. Then we only consider edges
where w is below a certain threshold. Note that the relationship
between two numerical columns are based on the key columns,
and the θ refers the multiplier from one column to another
column (i.e. directed). To simplify the coming discussions,
we define these edges as K-edges as follows:

Definition 4. A K-edge is an edge between two nodes that (1)
encodes multipliers of (T.B → T ′.B′) : θ and (T ′.B′ →
T.B) : 1

θ ; (2) contains a weight w from Equation 2 as
the inverse strength of the relationship, and; (3) reveals the
relationships between T.B and T ′.B′ conditioned on T.K and
T ′.K ′.

B. Context Match Approach

With the key match approach, relationships between two
tables can be detected only if they share some keys. With
this limitation, we relationships between tables with similar
semantics can not be discovered if they share no keys. How-
ever, our observation is that we can study the contexts of these
edges to infer the relationships between nodes that do not
share the same keys. For example, given two key value pairs
T (product, price) from two tables T (product, place, price) in
Figure 4, we can observe that although place column is not
treated as the key column, entries of the place column of
the rows shared common keys provide a meaning semantic
relationship with price values.

To formulate this observation, we annotate the nodes with
an extra categorical column K̂ from the same original data
table (i.e., K̂,K ∈ K) if the records’ attributes in T.K imply
the attributes in T.K̂ (i.e., t[T.K]⇒ t[T.K̂]). For example, if
the “country” column has a one-to-many relationship with the
“product” column a table, we annotate the “country” column
to every nodes that contains the “product” column in the table
node. Noted that there could be more than one annotated
columns on T (K,B).

Thus, after the annotations and key match approach in Sec-
tion IV-A, we also have records from key pairs (k̂, k̂′) of two
annotated columns (T.K̂, T.K̂ ′) between different nodes with
linear relationships (Figure 4). Together with the K edges, we
get a set of vectors < k̂, k̂′, T.K̂, T ′.K̂ ′, T.B, T ′.B′, θ, w >.
These vectors could help us to recover relationships in cases

Fig. 4. An example of context feature extracted after the key match approach.

there are tables T (K̂,B), T ′(K̂ ′, B′) with no matched keys,
where we can fill in the relationships with θ.

Undoubtedly, the vectors collected from all K-edges might
contain the same values of keys with different θ, w. It means
that these contexts collected from individual edges cannot
generalize to all edges. To decide whether the value of θ holds
for a combination of vector values, we group the tuples (θ, w)
by (k̂, k̂′, T.K̂, T ′.K̂ ′, T.B, T ′.B′) from all vectors to measure
the dispersion of θ. To be specific, we computed the Variance-
to-Mean Ratio (VMR) from these tuples and keep the contexts
(k̂, k̂′, T.K̂, T ′.K̂ ′, T.B, T ′.B′) that the VMR is below one.
Afterward, we retrieve nodes with tables T.K̂ or T ′.K̂ ′ as
annotated columns and T.B or T ′.B′ as numerical columns.
Note that multiple values of k̂ or k̂′ can exist in the same
nodes. Therefore, before adding any edges, we can split the
nodes by T.K̂ or T ′.K̂ ′ and copy the K-edges that are attached
to the original nodes to the newly formed nodes. Then, we add
an edge between the node corresponding to (k̂, T.K̂, T.B) and
the node corresponding to (k̂′, T ′.K̂ ′, T ′.B′), and annotate
them with θ and w = VMR. For coming discussions, we
define the edges related to context match as C-edges as
follows:

Definition 5. A C-edge is an edge between two nodes
that (1) encodes multipliers of (T.B → T ′.B′) : θ and
(T ′.B′ → T.B) : 1

θ ; (2) contains a weight w from VMR as
the inverse strength of the relationship, and; (3) reveals the
relationships between T.B and T ′.B′ conditioned on (k̂, T.K̂)
and (k̂′, T ′.K̂ ′).

V. COMPUTATIONAL FRAMEWORK

In this section, we describe how to implement the semantic
graph, as well as how the graph is applied to query processing
when users conduct data discovery tasks.

A. Semantic Graph Computation

We first introduce an overview approach to compute the
nodes and edges introduced in Section IV. Then, we introduce
the indexes needed to speed up the pipeline as well as an
approximation strategy to speed up the edge finding step in
the key match approach, which is one of the main bottlenecks.

Authorized licensed use limited to: Adobe Systems via Goldmine. Downloaded on January 29,2024 at 23:45:47 UTC from IEEE Xplore.  Restrictions apply. 



428

ALGORITHM 1: Approach Overview
Input : T — tables in data lake
Output: K,C — a set of K-edges and C-edges

threshold — threshold for keeping the edges

1 T← [] /* new tables encoded on each node */
2 for T (K,B) ∈ T do
3 for T.K in K do /* iterate over key columns */
4 Perform a group-by aggregation on T based on T.K for T.B
5 Keep the context key columns T.K̂ where T.K implies T.K̂.
6 T.push(T (K, K̂,B))
7 Initialize K as a table with columns (T.K, T.B, T ′.K′, T ′.B′, θ, w)
8 Initialize C as a table with columns (k̂, k̂′, T.K̂, T ′.K̂′, T.B, T ′.B′, θ, w)
9 for T (K, K̂,B) ∈ T do /* key match approach */

10 Join T (K, K̂,B) with other tables T ′ in T by T.K
11 for each joined relation (T ./ T ′) do
12 for (B ∈ B, B′ ∈ B′) in T ./ T ′ do /* iterate possible

combinations of (T.B, T ′.B′) */
13 compute the θ in Section IV-A between two columns
14 if w < threshold then
15 push ((T.K, T.B)→ (T ′.K′, T ′.B′), θ, w) to K for

t ∈ T ./ T ′ do /* get context vectors */
16 push ((t[T.K̂], t[T.K̂′], T.K̂, T ′.K̂′, T.B,

T ′.B′, θ, w)) to C
/* Context Match Approach */

17 Perform a group-by on C by (k̂, k̂′, T.K̂, T ′.K̂′, T.B, T ′.B′) and
aggregate (θ, w) with Variance Mean Ratio as new w in Section IV-B

18 Filter records in C with w < threshold

1) Algorithm Overview: The overview of semantic graph
construction is illustrated in Algorithm 1. First, we prepare
each table in the data lake as a set of group-by tables on all
numerical columns with each of its key columns (line 1 — 8).
Then, we conduct the key match approach for constructing the
K-edges (line 11 — 16). Last, we prepare the C-edges from
the context vectors collected during the key match approach
(line 17 — 18).

For the key match approach, we find potential edges be-
tween nodes by joining the tables by the keys in T.K. The
joined tables will have all the numerical columns from two
tables. Therefore, we can compute the linear relationships
between them by pairwise comparisons of the two sets of
numerical columns. The comparisons will result in two pairs
of (key, numerical) columns with the linear relationship and
weight, which we can return them as edges if the weight (i.e.,
R2 in Equation 2) is below some thresholds.

For the context match approach, noted that we can already
prepared the context columns when performing group-by
aggregations on the original tables (line 5). We can check if
every records inside each group-by keys are unique. Also, the
context vectors can be prepared when K-edges are produced
(line 15). Thus, after the key match approach, we can perform
a group-by on the context vectors to measure the VMR as
weights to identify the C-edges.

2) Speed Up By Building Indexes: To speed up the pipeline,
we can first build indexes to avoid comparing all table joins
(line 12-13). It is because computing the linear relationships
θ is only meaningful if (1) the key columns are related, and
(2) the columns share similar key values. Thus, we can build
a set of inverted indexes (k, T.K, T ) where k is the key value,
T.K is the name of the key column, and T is the table name.
By grouping the indexes with k and T.K, we can identify a
set of tables that are meaningful to be joined, without looping

each table with all tables in the data lake.
3) Speed Up with Data Sketches: Another bottleneck for

the computation is the need of comparing every numerical
columns in the joined tables (line 12). The operation is
quadratic with regards to the number of columns, since there is
a pairwise comparison to decide whether each pair of columns
has a linear relationship.

To avoid pairwise comparisons, one of the solutions is the
hash the numerical columns with a hash function h(b) into
an integer (i.e., bucket) such that the columns in the same
bucket are likely to have high degrees of correlations. In a
joined table, the numerical columns have the same number of
rows, which allow us to treat every column as a n-dimensional
vector, where n equals to the number of records. Then, the
correlation between two sets of values is equivalent to the
angle θ between two vectors. If we randomly pick a hyperplane
through the origin in the n-dimensional space, then the proba-
bility that the vectors lie on the same side of the plane will be
(1 - θ

π ). To leverage this observation, let f1, f2, . . . , fc ∈ Rk
be random k-dimensional vectors. Then, columns B and B′

are in the same bucket if sgn(Bi · fi) = sgn(B′i · fi) for all i.
In a way, we can look at sgn(B ·f1), sgn(B ·f2) . . . sgn(B ·fc)
as a binary string of length c representing the bucket number.
Vectors with the same distribution will be mapped into the
same bucket whereas vectors with different distributions will
likely be mapped into different buckets.

B. Query Processing

Remind that for some input keys k1, . . . , kn and a numerical
column B, we want to figure out r1 × k1.B, . . . , rn × kn.B.
Thus, we first need to identify a source node ns which has
a corresponding table representing the semantic B. Once we
find ns, then for each key ki, we need to identify a path pi
from ns to nt, where nt is a node containing ki in its key
column. By using the path pi, we can extract ki.C and the
linear transformation by multiplying θ throughout the path.
Therefore, the query processing step is as follows:

1) Finding the right connecting component. At a first step,
we look at connected components containing maximum
number of the desired keys k1, . . . , kn. Let χ1 . . . χ`
be the connected components with B as the numerical
column. Let χ = χi∗ be the target connected component.

2) Finding the source node. In a connected component χ,
the source node s can be chosen arbitrarily or based
on the user’s selection (e.g., choosing the currency the
user wants for standardization). Choosing source this way
allows us to find k1.B, . . . , kn.B (if those information
exists in the connected component) and put them in the
same format. If the target format Z and the format Zs of
s is known, then it is possible to convert all values into
format Z afterwards, as a post-processing.

3) Finding the shortest paths. For each s − t path p, wp
represents the error of θp, which can be interpreted as
the confidence level of linear dependence between the
columns. Hence, for a key k containing in node t, we
want to find a path pk with minimum wpk . Such a path

Authorized licensed use limited to: Adobe Systems via Goldmine. Downloaded on January 29,2024 at 23:45:47 UTC from IEEE Xplore.  Restrictions apply. 



429

can be found using any single-source weighted shortest
path algorithm like Dijkstra or Bellman-Ford [76].

C. Implementation
We implement the semantic graph construction pipeline

in Spark computing framework [77]. It provides efficient
parallelism in distributed platform for concurrent operations
such as JOIN or GROUP BY. Once the query processing graph
is computed, we can save the nodes, connected components,
and edges to a database with indexes for efficient operations
in a standalone platform.

VI. EVALUATION

In this section, we describe the experiments on our pipeline.
Our goal is to demonstrate that:

1) Our approach provides more accurate augmentations
compared on various scenarios and real datasets.

2) Our graph construction pipeline scales to process real life
datasets. For example, a graph with 5 billion edges can
be computed within hours.

3) The semantic graph and query processing enables an in-
teractive user interface for a new visual analysis approach.

A. Datasets and Environment
We use the following datasets for the experiments:
• Synthetic data generated from an eCommerce dataset2.

There are 50,000 unique products from the sales
record. Each record from the eCommerce dataset con-
tains product_id, category and sales_price in
USD. We replicate the records with different currencies
from a set of pre-defined conversions and split the records
in multiple tables to see whether we can recover the
original table with the same currency with different
approaches.

• Real datasets from the UK Open Data3. The UK Open
Data contains data lakes from various topics. We mainly
use these datasets to evaluate the scalability of our
approaches. We crawled the data lakes with from the
topics as follows:
– Business and Economy (1,059 tables); dataset related

to small businesses, industry, imports, exports and
trade.

– Environment (1,559 tables); dataset related to weather,
flooding, rivers, air quality, geology and agriculture.

– Government Spending (10,093 tables); dataset related
to payments by government departments over £25,000.

– Health (724 tables); dataset related to smoking, drugs,
alcohol, medicine performance and hospitals.

– Society (438 tables); dataset related to employment,
benefits, household finances, poverty and population.

Our experiments were performed in an Azure Databricks
platform. The computing resources included a Hadoop cluster
with 16 cores and 56GB memory (aka. Standard_DS5_v2
configurations).

2https://www.kaggle.com/mkechinov/ecommerce-behavior-data
3https://data.gov.uk/

Fig. 5. Accuracy on synthetic sales data.

B. Accuracy

We provide two other approaches that could address the
challenges of augmenting attributes. Other than building a
semantic graph, we can treat the problem as a missing value
imputation problem. We can train a regression model from
samples with the same keys from different tables and predicts
the multiplier towards a source table. The comparison of such
approach is to build a linear regressor which fills in the
values by learning features from the data tables [78]. With the
regression models, we evaluate our approaches to understand
the quality of data augmentation between regressions and
graph based approaches.

We generate the synthetic data from the eCommerce dataset
by varying the number of tables and the number of records
in each table. In each table, the records are sampled from
the original 50,000 records with replacement, and each table
is assigned a currency with a “country” column (e.g., in a
table with product_price in “USD”, each record will have
“USA” as values in the country column). For the first set
of experiments, we fix the number of records to 50 for each
table and vary the number of tables from 2,000 to 10,000. For
the second set of experiments, we fix the number of tables
to 2,000 and vary the number of records from 50 to 500.
As we aim to recover the original table’s information, our
Number Augmentation consists of all product_ids from the
original table, and the attribute we look for is the “price”.
For standardization, we use a randomly selected table that has
“USA” in its “country” column as the source table. Since
the sales items’ prices are in different ranges and our goal is
to acquire the correct values, given a set of predicted values
vp ∈ Vp and original values vo ∈ Vo, the accuracy metric is
defined as:

accuracy =
|{(vp, vo)∀RE(vp, vo) < 5%}|

|Vo|

where RE is the relative error of predictions on the original
values.

The result is shown in Figure 5. We can see that the accuracy
from our semantic graph approach improves to become better
than the regression models when the number of tables and
number of records in each table increase. When the keys from
the query are scattered sparsely in data lake, sampling becomes
much harder to provide sufficient insights for machine learning
models to perform well. Yet, the abundance of data lake can

Authorized licensed use limited to: Adobe Systems via Goldmine. Downloaded on January 29,2024 at 23:45:47 UTC from IEEE Xplore.  Restrictions apply. 



430

TABLE I
THE TABLE SHOWS THE RUN TIME AND SEMANTIC GRAPH OUTCOMES FOR REAL DATASETS IN THE UK OPEN DATA. THE #Rows / Table REPRESENTS

THE average number of rows in each table IN THE DATASET.

Run Time Breakdown No. of Edges Detected

Dataset #Tables (#Rows / Table) Create Index Schema Matching Key Match Context Match Key Edges Context Edges

Business and Economy 1,059 (927) 36.0 sec 50 sec 1.84 min 2.49 min 73,364 35,053,722
Environment 1,559 (1,430) 14 sec 36 sec 3.87 min 8.02 min 101,270 168,254,501

Government Spending 10,093 (1,430) 46.76 sec 1.91 min 4.44 min 2.2 hr 5,360,525 5,125,454,603
Health 729 (30,199) 1.35 min 1.67 min 2.14 min 1.1hr 159,350 242,711,884
Society 438 (2,481) 2.76 min 2.95 min 3.84 min 4.36 min 4,736 3,126

Fig. 6. Our user interface demonstrating the functionality of the semantic graph on an online data platform.

help our approaches to improve to enhance data discovery.
Also, the addition of contexts to connect the semantic graph
also provides better outcome to the standardization when
records are few in each table.

We also evaluate the approaches with the real datasets from
the data lakes in the UK Open Data. Since the real datasets do
not contain any ground truths, we are more interested in the
number of semantic edges we discover using our approaches in
Section IV-A and IV-B. The results are shown in Table V-C.
It can be seen that the context match approach detects sig-
nificantly more edges than the key match approach. This is
reasonable since even though there exists many columns with
semantic relationships among different datasets, they might
not share common keys. As a result, we need to leverage the
relationships detected between semantically matched columns
with keys to retrieve the semantic columns without the keys.

C. Runtime Performance

We provide a end-to-end evaluation of the computations of
different components to show that each of our stages in the
pipeline can scale to real data lakes. We report the time taken
to compute each component in creating our semantic graphs on

the real datasets in the UK Open Data in Table V-C. It can be
understood that the time scales in proportion to the amount
of outputs in each stage. We notice that the hard disk i/o
takes significant effects on the computation time. Nonetheless,
creating a semantic graph for over ten thousands of tables (i.e.,
Government Spending) only requires less than three hours with
a moderate sized computing cluster, which is reasonable for
practical sized data lakes.

D. Case Study

Now we discuss the user interface we developed for the
proposed approach. Notably, it uses the semantic graph to
enable a variety of data discovery features for use in a data
exploratory platform (Figure 6). We iteratively refined the
design through semi-structured interviews with two marketers
who analyze visitor behavior logs for large online retail stores.
Our use case is concerned about the automatic currency
conversion on sales records from multinational corporations.
First, users can fill in the sales items (i.e., keys) they want
and the “price” column (i.e., attributes) to look for the price
values that are scattered in the data lake (Figure 6(1)). Then,
the system will first retrieve all the matched key value pairs

Authorized licensed use limited to: Adobe Systems via Goldmine. Downloaded on January 29,2024 at 23:45:47 UTC from IEEE Xplore.  Restrictions apply. 



431

from the same connected component in the semantic graph,
and display the original values from each data table. Users
can browse the original data table on each record by checking
the rows in the result (Figure 6(2)). Then, they can select a
data table as source node to conduct the standardization of the
values. For verification, users can browse the directed graph
that shows the linear relationships of the edges that connect
the standardized value and the source table to understand what
how the conversion is conducted (Figure 6(3)).

In summary, our proposed system allows analysts to quickly
retrieve standardized records from many tables in the data lake
without manual number conversions. We believe such user ex-
perience will inspire new audience management technologies
and commercial solutions that were not possible before.

VII. CONCLUSION

This paper proposed a graph-based approach for numerical
data augmentation on data lakes. In particular, our approach
matches columns with similar semantic relationships without
any meta-data from the tables, and infers the conversion
rules among different numerical columns based on the values.
Our approach is carefully designed to be fast, efficient, and
parallel for large-scale data lakes with millions of datasets. We
also proposed efficient parallel algorithms for constructing the
semantic graph on a distributed computing environment (e.g.,
Spark). The experiments demonstrated the effectiveness of our
approach as it achieves better accuracy on semantic matches
and value conversations while being highly efficient for large-
scale data that arises in practice. Finally, we developed a user
interface for our proposed approach and used it to enable
a variety of data discovery features in a real-world data
exploration platform.

VIII. FUTURE WORKS

There are various aspects where we leave for future works.
The experiments should be done in a more streamlined manner
on more datasets with various, potentially bigger, sizes. Storing
the semantic graph can use memory extensively. This can
be studied further. In fact, it is possible not to store the
whole graph and only retrieve needed portion of the graph
from storage. We focus only on two transformation, namely,
aggregation and multiplication. Other transformation should be
considered as well in the future works. For example, an entry
value in a column could be a result of user-defined function
from two or more columns, e.g., an expense from using a
cloud cluster can be derived from CPU up-time and storage
usages. While we assume static datasets here, real-world data
can be evolving over time. Therefore, the semantic graph
might need to be updated. Recomputing it from scratch can
be costly. A systematic way to modifying to semantic graph
directly is more preferable and should be considered. Our
approach is Monte Carlo. When doing an imputation, it might
be beneficial to consider more than one possibilities, with
different confidence scores. The ultimate choice should then be
made by the end users. Finally, we believe that our approach
can be applied in many scenarios. It would be interesting to
see more studies on this approach on different applications.

REFERENCES

[1] N. W. Paton, J. Chen, and Z. Wu, “Dataset discovery and exploration:
A survey,” ACM Comput. Surv., vol. 56, no. 4, nov 2023.

[2] A. Khatiwada, R. Shraga, W. Gatterbauer, and R. J. Miller, “Integrating
data lake tables,” Proc. VLDB Endow., vol. 16, no. 4, p. 932–945, dec
2022.

[3] R. Hai, C. Koutras, C. Quix, and M. Jarke, “Data lakes: A survey of
functions and systems,” IEEE Transactions on Knowledge and Data
Engineering, vol. 35, no. 12, pp. 12 571–12 590, 2023.

[4] M. Ramirez, A. Bogatu, N. W. Paton, and A. Freitas, “Natural language
inference over tables: Enabling explainable data exploration on data
lakes,” in European Semantic Web Conference, 2021, pp. 304–320.

[5] R. Eichler, C. Giebler, C. Gröger, H. Schwarz, and B. Mitschang, “Mod-
eling metadata in data lakes—a generic model,” Data & Knowledge
Engineering, p. 101931, 2021.

[6] A. Beheshti, B. Benatallah, Q. Z. Sheng, and F. Schiliro, “Intelligent
knowledge lakes: the age of artificial intelligence and big data,” in WISE,
2020, pp. 24–34.

[7] Y. Zhang and Z. G. Ives, “Finding related tables in data lakes for
interactive data science,” in SIGMOD, D. Maier, R. Pottinger, A. Doan,
W. Tan, A. Alawini, and H. Q. Ngo, Eds., 2020, pp. 1951–1966.

[8] R. C. Fernandez, Z. Abedjan, F. Koko, G. Yuan, S. Madden, and
M. Stonebraker, “Aurum: A data discovery system,” in ICDE, 2018,
pp. 1001–1012.

[9] F. Ravat and Y. Zhao, “Data lakes: Trends and perspectives,” in Interna-
tional Conference on Database and Expert Systems Applications, 2019,
pp. 304–313.

[10] B. Małysiak-Mrozek, A. Lipińska, and D. Mrozek, “Fuzzy join for
flexible combining big data lakes in cyber-physical systems,” IEEE
Access, vol. 6, pp. 69 545–69 558, 2018.

[11] M. N. Mami, D. Graux, S. Scerri, H. Jabeen, S. Auer, and J. Lehmann,
“Uniform access to multiform data lakes using semantic technologies,”
in ICPS, 2019, pp. 313–322.

[12] S. D. Meena and M. S. V. Meena, “Data lakes-a new data repository for
big data analytics workloads,” IJARCS, vol. 7, no. 5, pp. 65–66, 2016.

[13] Y. Zhao, F. Ravat, J. Aligon, C. Soule-dupuy, G. Ferrettini, and
I. Megdiche, “Analysis-oriented metadata for data lakes,” in IDEAS,
2021, pp. 194–203.

[14] S. Zhang and K. Balog, “Semantic table retrieval using keyword and
table queries,” TWEB, vol. 15, no. 3, pp. 1–33, 2021.

[15] M. Trabelsi, Z. Chen, B. D. Davison, and J. Heflin, “A hybrid deep
model for learning to rank data tables,” in IEEE BigData, 2020, pp.
979–986.

[16] F. Chirigati, R. Rampin, A. Santos, A. Bessa, and J. Freire, “Auctus: A
dataset search engine for data augmentation,” arXiv:2102.05716, 2021.

[17] A. Chapman, E. Simperl, L. Koesten, G. Konstantinidis, L.-D. Ibáñez,
E. Kacprzak, and P. Groth, “Dataset search: a survey,” VLDB, vol. 29,
no. 1, pp. 251–272, 2020.

[18] L. Bornemann, T. Bleifuß, D. V. Kalashnikov, F. Naumann, and D. Sri-
vastava, “Natural key discovery in wikipedia tables,” in WWW, 2020,
pp. 2789–2795.

[19] J. Arguello and R. Capra, “Sources of evidence for interactive table
completion,” in Proc. of the Conf. on Human Info. Inter. and Retrieval,
2020, pp. 343–347.

[20] O. Lehmberg, D. Ritze, R. Meusel, and C. Bizer, “A large public corpus
of web tables containing time and context metadata,” in WWW, 2016,
pp. 75–76.

[21] M. J. Cafarella, A. Halevy, and N. Khoussainova, “Data integration for
the relational web,” VLDB, vol. 2, no. 1, pp. 1090–1101, 2009.

[22] M. J. Cafarella, A. Halevy, D. Z. Wang, E. Wu, and Y. Zhang,
“Webtables: exploring the power of tables on the web,” VLDB, pp. 538–
549, 2008.

[23] W. Shen, J. Wang, and J. Han, “Entity linking with a knowledge base:
Issues, techniques, and solutions,” TKDE, vol. 27, no. 2, pp. 443–460,
2014.

[24] C. S. Bhagavatula, T. Noraset, and D. Downey, “Tabel: Entity linking
in web tables,” in International Semantic Web Conference, 2015, pp.
425–441.

[25] C. Zhao and Y. He, “Auto-em: End-to-end fuzzy entity-matching using
pre-trained deep models and transfer learning,” in WWW, 2019, pp.
2413–2424.

Authorized licensed use limited to: Adobe Systems via Goldmine. Downloaded on January 29,2024 at 23:45:47 UTC from IEEE Xplore.  Restrictions apply. 



432

[26] Y. Li, J. Li, Y. Suhara, J. Wang, W. Hirota, and W.-C. Tan, “Deep entity
matching: Challenges and opportunities,” JDIQ, vol. 13, no. 1, pp. 1–17,
2021.

[27] W. Fan, L. Geng, R. Jin, P. Lu, R. Tugay, and W. Yu, “Linking
entities across relations and graphs,” in 2022 IEEE 38th International
Conference on Data Engineering (ICDE), 2022, pp. 634–647.

[28] J. Chen, E. Jiménez-Ruiz, I. Horrocks, and C. Sutton, “Colnet: Embed-
ding the semantics of web tables for column type prediction,” in AAAI,
vol. 33, no. 01, 2019, pp. 29–36.

[29] M. Hulsebos, K. Hu, M. Bakker, E. Zgraggen, A. Satyanarayan,
T. Kraska, Ç. Demiralp, and C. Hidalgo, “Sherlock: A deep learning
approach to semantic data type detection,” in KDD, 2019, pp. 1500–
1508.

[30] D. Zhang, Y. Suhara, J. Li, M. Hulsebos, Ç. Demiralp, and W.-C. Tan,
“Sato: Contextual semantic type detection in tables,” arXiv:1911.06311,
2019.

[31] C. Koutras, G. Siachamis, A. Ionescu, K. Psarakis, J. Brons, M. Fragk-
oulis, C. Lofi, A. Bonifati, and A. Katsifodimos, “Valentine: Evaluating
matching techniques for dataset discovery,” in ICDE, 2021, pp. 468–479.

[32] A. Bogatu, N. W. Paton, M. Douthwaite, and A. Freitas, “Voyager:
Data discovery and integration for data science,” Journal of Data and
Information Quality., 2022.

[33] F. Nargesian, K. Q. Pu, E. Zhu, B. Ghadiri Bashardoost, and R. J. Miller,
“Organizing data lakes for navigation,” in SIGMOD, 2020.

[34] M. Zhang and K. Chakrabarti, “Infogather+: semantic matching and
annotation of numeric and time-varying attributes in web tables,” in
SIGMOD, K. A. Ross, D. Srivastava, and D. Papadias, Eds. ACM,
2013, pp. 145–156.

[35] Y. Li, J. Li, Y. Suhara, A. Doan, and W.-C. Tan, “Deep entity matching
with pre-trained language models,” arXiv:2004.00584, 2020.

[36] X. Dong, E. Gabrilovich, G. Heitz, W. Horn, N. Lao, K. Murphy,
T. Strohmann, S. Sun, and W. Zhang, “Knowledge vault: A web-scale
approach to probabilistic knowledge fusion,” in KDD, 2014, pp. 601–
610.

[37] S. Zhang and K. Balog, “Auto-completion for data cells in relational
tables,” in CIKM, 2019, pp. 761–770.

[38] J. Fan, M. Lu, B. C. Ooi, W.-C. Tan, and M. Zhang, “A hybrid machine-
crowdsourcing system for matching web tables,” in ICDE, 2014.

[39] D. Brickley, M. Burgess, and N. F. Noy, “Google dataset search:
Building a search engine for datasets in an open web ecosystem,” in
WWW, L. Liu, R. W. White, A. Mantrach, F. Silvestri, J. J. McAuley,
R. Baeza-Yates, and L. Zia, Eds., 2019, pp. 1365–1375.

[40] N. Makhija, M. Jain, N. Tziavelis, L. Di Rocco, S. Di Bartolomeo, and
C. Dunne, “Loch prospector: Metadata visualization for lakes of open
data,” in VIS, 2020, pp. 126–130.

[41] P. Ouellette, A. Sciortino, F. Nargesian, B. G. Bashardoost, E. Zhu,
K. Q. Pu, and R. J. Miller, “Ronin: Data lake exploration,” Proc. VLDB
Endow., vol. 14, no. 12, 2021.

[42] A. Y. Halevy, F. Korn, N. F. Noy, C. Olston, N. Polyzotis, S. Roy,
and S. E. Whang, “Goods: Organizing google’s datasets,” in SIGMOD,
F. Özcan, G. Koutrika, and S. Madden, Eds., 2016, pp. 795–806.

[43] R. C. Fernandez, E. Mansour, A. A. Qahtan, A. Elmagarmid, I. Ilyas,
S. Madden, M. Ouzzani, M. Stonebraker, and N. Tang, “Seeping
semantics: Linking datasets using word embeddings for data discovery,”
in ICDE, 2018, pp. 989–1000.

[44] O. Lehmberg and C. Bizer, “Stitching web tables for improving matching
quality,” VLDB, vol. 10, no. 11, pp. 1502–1513, 2017.

[45] X. Yin and W. Tan, “Semi-supervised truth discovery,” in WWW, 2011.
[46] Y. He, K. Chakrabarti, T. Cheng, and T. Tylenda, “Automatic discovery

of attribute synonyms using query logs and table corpora,” in WWW,
2016, pp. 1429–1439.

[47] Z. Abedjan, J. Morcos, I. F. Ilyas, M. Ouzzani, P. Papotti, and M. Stone-
braker, “Dataxformer: A robust transformation discovery system,” in
ICDE, 2016, pp. 1134–1145.

[48] J. Wang, H. Wang, Z. Wang, and K. Q. Zhu, “Understanding tables on
the web,” in Inter. Conf. on Conc. Modeling, 2012, pp. 141–155.

[49] P. Ristoski and H. Paulheim, “Semantic web in data mining and
knowledge discovery: A comprehensive survey,” J. of Web Sem., vol. 36,
pp. 1–22, 2016.

[50] D. Qiu, L. Barbosa, X. L. Dong, Y. Shen, and D. Srivastava, “Dexter:
large-scale discovery and extraction of product specifications on the
web,” VLDB, vol. 8, no. 13, pp. 2194–2205, 2015.

[51] S. Zhang, E. Meij, K. Balog, and R. Reinanda, “Novel entity discovery
from web tables,” in WWW, 2020, pp. 1298–1308.

[52] D. Ritze, O. Lehmberg, Y. Oulabi, and C. Bizer, “Profiling the potential
of web tables for augmenting cross-domain knowledge bases,” in WWW,
2016, pp. 251–261.

[53] S. Zhang and K. Balog, “Web table extraction, retrieval, and augmenta-
tion: A survey,” TIST, vol. 11, no. 2, pp. 1–35, 2020.

[54] E. Zhu, D. Deng, F. Nargesian, and R. J. Miller, “JOSIE: overlap set
similarity search for finding joinable tables in data lakes,” in SIGMOD,
P. A. Boncz, S. Manegold, A. Ailamaki, A. Deshpande, and T. Kraska,
Eds., 2019, pp. 847–864.

[55] A. Bogatu, A. A. Fernandes, N. W. Paton, and N. Konstantinou, “Dataset
discovery in data lakes,” in ICDE, 2020, pp. 709–720.

[56] M. Esmailoghli, J.-A. Quiané-Ruiz, and Z. Abedjan, “Cocoa: Correlation
coefficient-aware data augmentation,” in EDBT, 2021, pp. 331–336.

[57] U. Khurana and S. Galhotra, “Semantic annotation for tabular data,”
arXiv:2012.08594, 2020.

[58] R. Khan and M. Gubanov, “Weblens: Towards interactive large-scale
structured data profiling,” in CIKM, 2020, pp. 3425–3428.

[59] Y. Dong, K. Takeoka, C. Xiao, and M. Oyamada, “Efficient joinable
table discovery in data lakes: A high-dimensional similarity-based
approach,” in ICDE, 2021, pp. 456–467.

[60] A. Helal, “Data lakes empowered by knowledge graph technologies,” in
SIGMOD, 2021, pp. 2884–2886.

[61] A. Helal, M. Helali, K. Ammar, and E. Mansour, “A demonstration
of kglac: A data discovery and enrichment platform for data science,”
PVLDB, vol. 14, p. 12, 2021.

[62] X. Deng, H. Sun, A. Lees, Y. Wu, and C. Yu, “Turl: Table understanding
through representation learning,” arXiv:2006.14806, 2020.

[63] R. Hai, C. Quix, and M. Jarke, “Data lake concept and systems: a
survey,” arXiv:2106.09592, 2021.

[64] P. A. Bernstein, J. Madhavan, and E. Rahm, “Generic schema matching,
ten years later,” VLDB, vol. 4, no. 11, pp. 695–701, 2011.

[65] G. Karagiannis, M. Saeed, P. Papotti, and I. Trummer, “Scrutinizer: fact
checking statistical claims,” VLDB, vol. 13, no. 12, pp. 2965–2968, 2020.

[66] S. Giannakopoulou, M. Karpathiotakis, and A. Ailamaki, “Cleaning
denial constraint violations through relaxation,” in SIGMOD, D. Maier,
R. Pottinger, A. Doan, W. Tan, A. Alawini, and H. Q. Ngo, Eds., 2020,
pp. 805–815.

[67] X. Liang, Z. Shang, S. Krishnan, A. J. Elmore, and M. J. Franklin,
“Fast and reliable missing data contingency analysis with predicate-
constraints,” in SIGMOD, D. Maier, R. Pottinger, A. Doan, W. Tan,
A. Alawini, and H. Q. Ngo, Eds., 2020, pp. 285–295.

[68] G. Duggal, R. Patro, E. Sefer, H. Wang, D. Filippova, S. Khuller,
and C. Kingsford, “Resolving spatial inconsistencies in chromosome
conformation measurements,” Algorithms Mol. Biol., vol. 8, p. 8, 2013.

[69] J. Picado, J. Davis, A. Termehchy, and G. Y. Lee, “Learning over dirty
data without cleaning,” in SIGMOD, D. Maier, R. Pottinger, A. Doan,
W. Tan, A. Alawini, and H. Q. Ngo, Eds., 2020, pp. 1301–1316.

[70] M. Kleindessner, P. Awasthi, and J. Morgenstern, “A notion of individual
fairness for clustering,” CoRR, vol. abs/2006.04960, 2020.

[71] S. A. Esmaeili, B. Brubach, L. Tsepenekas, and J. Dickerson, “Proba-
bilistic fair clustering,” in NeurIPs, H. Larochelle, M. Ranzato, R. Had-
sell, M. Balcan, and H. Lin, Eds., 2020.

[72] B. Heinrich, M. Kaiser, and M. Klier, “Metrics for measuring data
quality - foundations for an economic data quality management,” in
ICSOFT, J. Filipe, B. Shishkov, and M. Helfert, Eds. INSTICC Press,
2007, pp. 87–94.

[73] S. Schelter, D. Lange, P. Schmidt, M. Celikel, F. Bießmann, and
A. Grafberger, “Automating large-scale data quality verification,” VLDB,
vol. 11, no. 12, pp. 1781–1794, 2018.

[74] D. Cashman, S. Xu, S. Das, F. Heimerl, C. Liu, S. R. Humayoun,
M. Gleicher, A. Endert, and R. Chang, “CAVA: A visual analytics system
for exploratory columnar data augmentation using knowledge graphs,”
IEEE Trans. Vis. Comput. Graph., vol. 27, no. 2, pp. 1731–1741, 2021.

[75] P. Bojanowski, E. Grave, A. Joulin, and T. Mikolov, “Enriching word
vectors with subword information,” Transactions of the Association for
Computational Linguistics, vol. 5, pp. 135–146, 2017.

[76] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to algorithms. MIT press, 2009.

[77] M. Zaharia, R. S. Xin, P. Wendell, T. Das, M. Armbrust, A. Dave,
X. Meng, J. Rosen, S. Venkataraman, M. J. Franklin et al., “Apache
spark: a unified engine for big data processing,” Communications of the
ACM, vol. 59, no. 11, pp. 56–65, 2016.

[78] F. Biessmann, T. Rukat, P. Schmidt, P. Naidu, S. Schelter, A. Taptunov,
D. Lange, and D. Salinas, “Datawig: Missing value imputation for
tables.” JMLR, vol. 20, pp. 175–1, 2019.

Authorized licensed use limited to: Adobe Systems via Goldmine. Downloaded on January 29,2024 at 23:45:47 UTC from IEEE Xplore.  Restrictions apply. 


