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Abstract
Local explainability methods – those which seek
to generate an explanation for each prediction
– are increasingly prevalent. However, results
from different local explainability methods are
difficult to compare since they may be parameter-
dependant, unstable due to sampling variability,
or in various scales and dimensions. We propose
GALE, a topology-based framework to extract a
simplified representation from a set of local expla-
nations. GALE models the relationship between
the explanation space and model predictions to
generate a topological skeleton, which we use to
compare local explanation outputs. We demon-
strate that GALE can not only reliably identify
differences between explainability techniques but
also provides stable representations. Then, we
show how our framework can be used to iden-
tify appropriate parameters for local explainability
methods. Our framework is simple, does not re-
quire complex optimizations, and can be broadly
applied to most local explanation methods.

1. Introduction
Increasingly complex machine learning (ML) models are be-
ing deployed in industries such as healthcare, cybersecurity,
and banking. While industries welcome the performance
boost from these ML models, organizations are also start-
ing to require their models to provide clear explanations
for their predictions, as necessitated by regulations, such
as GDPR. Thus, explainable artificial intelligence (XAI)
techniques are especially relevant, particularly those which
provide explanations for individual samples.

There are many techniques which provide local explana-
tions for predictive models (Ribeiro et al., 2016). These
techniques typically generate a real-valued vector which
represents the attributions of the input features to the predic-
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tion. However, even using a single explanation technique, it
is common to observe different outcomes based on different
parameters, which can be hard to tune. Furthermore, since
some local explainability methods rely on random sampling,
there may also exist sampling variability, which can further
impact the stability of the explanation output. Since there
are many local explanation methods, each with their own
set of parameters, it raises an important question – how do
we assess and compare explanations from different local ex-
plainability frameworks? By doing so, for a given prediction
problem, we can develop a quantitative sense of “consensus”
among various local explanation frameworks for different
prediction tasks, which can be useful for benchmarking.

We propose GALE (globally assessing local explanations), a
simple approach to assess the difference between sets local
explanations. We accomplish this through an analysis of
the topological properties of a given explanation space for
binary classification problems. Specifically, we model an
explanation method as a scalar function that captures the
relationship between the explanation space and the class
prediction. Using this function, we compute its topological
skeleton. This skeleton is used to generate a topological sig-
nature which is then used to compare explanation methods.
We can calculate distances between topological skeletons
produced by different local explanation methods to com-
pare their similarity. GALE is easy to implement and lacks
complex optimizations or parameter tuning.

To the best of our knowledge, our approach is the first to use
computational topology for comparing XAI methods. We
view topology as a promising direction for understanding
and comparing explanation methods and GALE, a powerful
yet accessible framework, is the first step in that direction.
The contributions of this work can be summarized as fol-
lows:

1. GALE (Global Assessing Local Explanations) a
topology-based approach to generate a global signature
for a given local explanation method’s output. By pro-
viding a domain-agnostic signature for explanation tech-
niques, our approach allows comparison across heteroge-
neous explanation approaches.

2. We demonstrate that GALE is both stable and can elu-
cidate differences between explanations through experi-
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Figure 1. GALE transforms local explanations into a topological representation used to compare local explanation methods.

ments on gradient-based and surrogate model techniques
with real-world and synthetic data.

3. We show that GALE can be used to find appropriate
parameters for local explanation methods by comparing
topological signatures for different sets of parameters.

2. Related Work
To balance the desire for machine learning model perfor-
mance improvements along with growing calls for explain-
able model decisions, practitioners are increasingly turning
to posthoc local explainability methods (Weld & Bansal,
2019). These local explanation methods typically pro-
duce a vector representing the attributions of input fea-
tures, and are generally well-received by users. For ex-
ample, LIME (Ribeiro et al., 2016) and SHAP (Lundberg
& Lee, 2017) are two common posthoc, model-agnostic
methods that produce local feature attributions. However,
it is hard to compare results across different explainability
methods. Jeyakumar et al. (2020) find, through surveys
with hundreds of non-technical users, that explanation-by-
example and LIME were the preferred explanation styles.
Barr et al. (2020) propose synthetic data generation with
known ground truth to explore explainability. Taxonomies,
such as Explainability Fact Sheets, also provide some guid-
ance on a unified language around explainability and raise
important questions for explainability researchers to ad-
dress (Doshi-Velez & Kim, 2017; Sokol & Flach, 2020).

Some local explanation methods, like integrated gradi-
ents, rely on baselines to generate feature attributions.
Haug et al. (2021) show that popular local explanation meth-
ods are sensitive to the choice of baseline. Sundararajan and
Najmi (2020) propose Baseline Shapley and prove its desir-
able properties. Sturmfels et al. (2020) visually investigate
choices of baselines and note that while one can compare
baselines through visual inspection, this approach is diffi-
cult to scale to enable a large-scale study of interpretability.
Furthermore, Mohseni et al. (2021) identify user biases in
the subjective rating of model saliency explanations.

To assess and compare the attributions from local explana-
tion methods, a straightforward way is to ablate the top K
features ranked by the attributions and observe the decrease

of the predicted output score (Sturmfels et al., 2020). To
avoid simply removing the top K features without consider-
ing the correlations among features, we can ablate the center
of mass of the input instead (Ghorbani et al., 2019). Also,
to avoid issues of model extrapolation on ablated inputs,
we can retrain the model on the ablated data and measure
the performance degradation (Hooker et al., 2018). Fur-
thermore, local explanation methods can also be assessed
by comparing their behavior between a randomly parame-
terized model and a trained model (Adebayo et al., 2018).
Besides ablation, we can measure the quality of explanations
with metrics such as (in)fidelity and sensitivity under pertur-
bations (Yeh et al., 2019), or impact score that measures the
feature importance on decision marking process (Lin et al.,
2019). If the apriori of feature importance of the dataset
is known, the feature importance of input across different
models can also be assessed (Yang & Kim, 2019).

Although topological data analysis (TDA) is beginning to
be considered for explainability purposes, the field is still
nascent. One example of TDA for explainability purposes
is shown by Elhamdadi et al. (2021) use TDA to study
face poses used in affective computing and find that their
topology-based approach captures known patterns. Van
Veen (2020) proposed visual constraints on TDA output to
aid interpretability, specifically for viewing global, cluster
and local explanations. However, there is little work on
applying TDA to the outputs of explanation methods in order
to compare heterogeneous explanations or quantitatively
measure consensus among explanations.

3. Methods
3.1. Topological Background

Reeb Graph and Mapper. Consider a scalar function
f : M → R, that maps from a manifold M to R. The
level set f−1(a) at a given scalar value a is the set of all
points that have the function value a. The Reeb graph (Reeb,
1946) of f is computed by contracting each of the connected
components of the level sets of f to a single point, resulting
in a skeleton-like representation of the input.

However, many real-world data sets are available as func-
tions defined on a set of discrete high-dimensional points
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rather than as continuous functions. The Mapper algo-
rithm (Singh et al., 2007) computes an approximation of
Reeb graph of some user-defined function (often called lens
or filter function) of such data. Essentially, the Mapper
algorithm divides the function range into a set of overlap-
ping intervals and approximates the level sets to be the set
of points that fall within each of these intervals. The con-
nected components of these approximate level sets are then
computed by clustering the points that are part of a given
interval. Each cluster then forms a node of the approximate
Reeb graph and an edge is present between two nodes if
they share one or more input points.

Persistence. Given a scalar value a, the sublevel set
f−1((−∞, a]) is defined as the set of all points on the do-
main that have a function value less than or equal to a.
Consider a filtration of the input that sweeps the input scalar
function f with increasing function values. As the function
value increases, the topology of the sublevel sets changes
at the critical points of the function (where its gradient is
zero), and remains constant at other points.

In particular, at a critical point, either a new topology is
created, or some topology is destroyed. Here, topology is
quantified by a class of k-dimensional cycles (or k-cycles).
For example, a 0-cycle represents a connected component,
a 1-cycle is a loop that represents a tunnel, and a 2-cycle
bounds a void. A critical point is a creator if a new topology
appears and a destroyer otherwise. Given a set of criti-
cal points c1, c2, . . . , cm, one can pair up each creator ci
uniquely with a destroyer cj which destroys the topology
created at ci. We say that a topological feature is born at ci
and it dies at cj . The topological persistence (Edelsbrunner
et al., 2002) of this topological feature that is created at ci
is defined as f(cj)− f(ci), which intuitively indicates the
lifetime of this feature in this sweep.

Since we are working with functions defined over discrete
points, we use the graph computed by the Mapper algorithm
to compute the topological persistence (Edelsbrunner et al.,
2002) of the features of the input. Here, the filtration is
defined on the nodes and edges of the graph as follows.
Each node is assigned a function value equal to the mean
of the function values of the clustered points represented by
that node. The order of the nodes added during the filtration
(or sweep) is defined by the function value of the nodes. An
edge is added during the step of the filtration as soon as both
its endpoint nodes are added.

Persistence Diagrams. A persistence diagram plots the
topological features as a 2-dimensional scatter plot (Edels-
brunner et al., 2002). Each point in the plot corresponds to a
single feature and has x and y coordinates equal to its birth
and death values respectively obtained from the extended fil-
tration (Figure 2, lower left). Persistence diagrams provide a
useful mechanism to assess the structure of scalar functions.

Figure 2. Comparing two sets of explanations using GALE. First,
the explanation spaces are summarized using Mapper. From the
Mapper output, we create persistence diagrams. Topological fea-
tures correspond to points in the persistence diagram. In this
example, we see that while the two Mapper outputs are similar,
the Mapper output from the SHAP explanations is different from
that of the LIME explanations (nodes in upper right differ, nodes
in lower left overlap).

Moreover, it has also been shown that persistence diagrams
are robust to noise (Cohen-Steiner et al., 2007). We can also
calculate the distance between two persistence diagrams. In
this work, we use the bottleneck distance (Cohen-Steiner
et al., 2007). Bottleneck distance measures the similarity
between two persistence diagrams by finding the shortest
distance b for which there exists a perfect matching between
the two persistence diagrams, along with all points on the
diagonal, such that any pair of matched points have at most
a distance of b between them. Formally,

db(PA, PB) = inf
γ

sup
x

∥x− γ(x)∥∞ (1)

where PA and PB are persistence diagrams, which are mul-
tisets, x ∈ PA, y ∈ PB and γ ranges over all bijections
from PA to PB .

3.2. GALE: Globally Assessing Local Explanations

In this section, we introduce our approach to globally
assessing local explanations (GALE). Let X ⊂ Rn be a
data set and P : X → [0, 1] a binary classification model,
where P (x) ∈ [0, 1] is the probability of x ∈ X belong-
ing to the “1” class. Given X and the model P , a local
explanation method can be seen as a mapping from the
data set to the explanation space E : X → Rd, where
E(x) provides the “importance” of the different attributes
for the classification of x ∈ X . While d = n for most ap-
proaches, d can be greater than n if the explanation method
outputs more than a scalar value for each attribute of the
input. The mapping X ′ = E(X ) gives rise to a point



GALE: Globally Assessing Local Explanations

Figure 3. End-to-end pipeline showing the initial data, learned decision boundary, LIME and SHAP explanations, and the topological
representations for three different 2-dimensional synthetic classification problems.

set in Rd, which is the explanation manifold. We can de-
fine a function f : X ′ → [0, 1] as f(x′) = P (x), where
x′ = E(x), x ∈ X . In GALE, we use the function f as the
lens function from which Mapper builds a summary repre-
sentation G. Intuitively, f captures the relationship between
the explanations and the classification probabilities. From
G, we can produce its persistence diagram D.

Since the explanation manifold can drastically vary across
different methods and parameters, a direct comparison of
the geometry of these manifolds is not possible. However,
studying the topology of such functions allows us to analyze
how explanation methods differ and thus, we can make
geometry agnostic comparisons. To do so, we can take the
distance between two persistence diagrams arising from two
different explanation methods. If the distance is low, then
the topologies of the explanation spaces are similar.

Furthermore, each topological feature (a point in the per-
sistence diagram) can be easily mapped back to a set of
input data points in X , thus allowing us to also compare
how the explanation space is spread across the input data.
We show an example of GALE on three synthetic data sets
in Figure 3.

3.3. Tuning Mapper Parameters

Mapper requires three parameters: 1) the resolution r of
the lens function that defines the number of intervals into
which the scalar function range is divided; 2) the gain g,
which defines the percentage overlap between successive
intervals; and 3) the clustering algorithm used (which may
carry its own parameters). The value of these parameters
determines the structure of the resultant graph, and hence
the persistence diagram.

In an ideal scenario, increasing the resolution and decreas-
ing the overlap would result in the graph computed using
the Mapper algorithm converging to the Reeb graph. How-

ever, in real-world data, too high a resolution or too low
a gain can result in the graph being a set of disconnected
nodes. In our implementation, we use agglomerative clus-
tering. Due to the varying spaces arising from different
explanation methods, we set the agglomerative clustering
distance threshold parameter to a fraction of the range of
the explanation space.

Depending on the data, small changes in the Mapper parame-
ters can drastically change the resulting graph, and hence the
persistence diagram. Poor selections of Mapper parameters
can produce graphs which are disjointed or unstable under
small perturbations to the input. Blaser and Aupetit (2020)
suggest that direct measures for measuring the quality of
Mapper output could be a combination of cluster quality
and their consistency. We are interested in identifying a
set of Mapper parameters that not only produces a “stable”
graph computation but also a graph with clear structure (i.e.,
a small number of connected components.)

To measure the aforementioned stability, we use bootstrap-
ping (Chazal et al., 2017) to compute the confidence in-
tervals for the bottleneck distances between persistence
diagrams. Consider a set of input explanation values
E = {e1, e2, ..., en} and the persistence diagram D gen-
erated by its Mapper graph G. G is generated from some
parameter set containing the resolution, gain and clustering
distance threshold. Then, for each iteration in the boot-
strap, we sample with replacement from E to construct
E∗ = {e∗1, e∗2, ..., e∗n}, compute Mapper graph G∗ and per-
sistence diagram D∗ from G∗, and calculate db(D,D∗).
Using the distribution of distances created by these itera-
tions, we can then find the value b̂α such that

P (db(D,D∗) ≥ b̂α) = α (2)

A parameter set which is stable will produce a low value for
b̂α. Additionally, for each iteration, we count the number
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of connected components in G∗. We can find the value ĉα
such that

P (connected components of G∗ ≥ ĉα) = α (3)

To tune the Mapper parameters, we perform a grid search
over the resolution, gain and distance threshold parameters.
For each parameter combination, we use 100 bootstrap it-
erations to estimate b̂α and ĉα for α = 0.05. Using the
estimated stability and connected components for every
combination of parameters, we then iterate through the pa-
rameter set and greedily select the best combination. While
this approach does not guarantee an optimal solution (e.g.,
we could arrive at a parameter set which has a low b̂α but
a high ĉα), we find that a greedy strategy works well on a
wide array of synthetic and real world data.

4. Evaluation
4.1. Comparing Baselines in Gradient-Based Methods

Here, we illustrate how GALE can be used to understand
and compare different explanation methods. In particu-
lar, we aim to address a common challenge in using local
explanation techniques—what should be the baseline for
gradient-based explanation methods?

Baselines act as references to compare the relative impor-
tance of features for an input so that attributions can be cal-
culated. We apply three explanation methods—Integrated
Gradients (Sundararajan et al., 2017), DeepLIFT (Shriku-
mar et al., 2017), and SHAP (Lundberg & Lee, 2017) with
five different baselines: (1) zero baseline (an input with all
values being zeros), (2) maximum distance baseline (Sturm-
fels et al., 2020), (3) Gaussian baseline (Smilkov et al., 2017;
Sturmfels et al., 2020), (4) uniform baseline (Sturmfels et al.,
2020), and (5) a trained baseline (Izzo et al., 2020), resulting
in 15 explanations for each experiment.

Our goal is to illustrate how GALE can be used to identify
explanation methods that behave differently. To do so, we
generate a synthetic data set with 5 features and determine
the labels with an extremely simple logic—the input will be
labeled as “1” if any of the columns contain a “zero” as value.
Otherwise, they are labeled as “0”. When working with real
data sets, it is normal for them to contain zero values that
may provide important information. Under our construction,
only zero values are important to the classification. Thus
we expect the zero baseline is the only reference that is not
a neutral input to the classifier. We created 20 different
synthetic data sets under the aforementioned conditions,
where each set varied in its rate of “0” labeled instances.

We first calculate a pairwise distance matrix for each of
the 20 data sets. Then, we average the distance matrices,
and show the result in Figure 4. We can see that there are

Figure 4. Pairwise distance matrix showing the average bottleneck
differences among gradient-based explanation methods across 20
synthetic datasets. We see that the methods which use the zero-
baseline (rows/columns denoted with “zero”) have higher bottle-
neck distances to the explanations using other baselines.

three rows and columns which have much greater average
distances (yellow color) than others, meaning that the per-
sistence diagrams generated by these explanations differ
greatly as compared to the other explanations. Such obser-
vation is consistent with the fact that zero baselines produce
different feature attributions by treating the important values
as neutral references. Furthermore, when we explore the
corresponding topological skeletons, we observe that these
explanations typically have a more scattered graph com-
pared with the others. Such visual evidence provide a sense
that the explanation values differ greatly among the inputs in
the data set. This evidence can be found statistically as well.
When computing the variances of the explanation values
among different outcomes, the variances are generally high
among the outputs with scattered topological graphs.

4.2. Evaluating Topological Stability

Many methods, like LIME, rely on stochastic behavior,
which can produce different explanations for different runs,
even when given the same parameters. It is important that
GALE is resistant to sampling variability incurred by lo-
cal explanation methods. In this section, we benchmark
GALE’s stability with regards to the variation induced by
local explainability methods. Additionally, we show how
our greedy approach to Mapper parameter selection aids in
finding stable topological representations.

To determine the robustness of GALE against local explana-
tion method variability, for each synthetic data set and the
diabetes data set, we run LIME 30 times. We restricted our
experiments to these data sets for computational purposes.



GALE: Globally Assessing Local Explanations

Data Row-Wise Distance Connected
Components

Greedy Fixed Greedy Fixed
Spirals 0.00 0.83 2.0 4.1
Circles 1.88 2.56 6.1 10.5
Corners 1.22 1.61 9.0 14.6

Lin. Sep. 0.00 0.00 4.0 4.0
Toy 0.03 0.00 2.0 3.0

Toy-Flip 0.00 0.00 2.0 2.2
Toy-Int. 0.16 0.00 2.0 5.0
Diabetes 0.38 2.70 4.3 36.4

Table 1. Average row-wise sum of distance matrix and average
connected component counts after using parameters found by our
greedy parameter search. We find that our parameter tuning proce-
dure produces more connected and stable Mapper output.

For each run, we generate two Mapper outputs: one which
uses the Mapper parameters found via a greedy search, as
described in section 3.2, and one which uses fixed parame-
ters: a resolution of 15, a gain of 0.3 and an agglomerative
distance threshold of 0.3 times the range of the explanation
space. We then generate two bottleneck distance matrices –
one for distances between the optimized Mappers and an-
other for distances between the fixed parameter Mappers.
In Table 1, we report the average row-sum for each of these
matrices for each synthetic data set, as well as the average
number of connected components from the generated Map-
per graphs. The higher the row-sum, the less consensus
there is among the explanation topologies produced by Map-
per. We see that by using our greedy Mapper parameter
search, our output is resistant to variation in LIME output.

4.3. Using GALE to Tune Explainability Method
Parameters

Many local explainability methods use a variety of param-
eters which guide the output. For example, in SHAP, one
can specify parameters such as the number of times to re-
evaluate the model when explaining each prediction in Ker-
nel SHAP, or the limit on the number of trees used in Tree
SHAP. Choosing an appropriate set of parameters is impor-
tant, as there can be significant variability in explanations
coming from even just slightly different parameters (Visani
et al., 2020). Here, we show how to use GALE to tune the
parameters of a local explainability method – LIME. We
consider a toy synthetic dataset with six independent fea-
tures, where only four are used for the prediction. We train a
random forest classifier on this data using the default sklearn
parameters. Our goal is to determine the number of features
to use for our LIME explanation, which we know to be four.
We set the size of the neighborhood to 50 observations.

Using our Mapper parameter tuning technique to find appro-

Figure 5. Row-wise sum of distance matrix for Mapper graphs
computed on LIME explanations of different feature counts. Since
the average row-wise distance stays constant when using 4 or
more features for LIME, we know that the produced topologies
are similar for these parameter values.

priate parameters, we compute the corresponding graph for
explanations using k features, where k ∈ {2, ..., 6}. Then,
we calculate the bottleneck distance between each of the
persistence diagrams. Next, we calculate the row-wise sum
of the distance matrix. Persistence diagrams which differ
strongly from others will have a high row-wise sum. We
plot the row-wise sum in Figure 5. We see that when the
number of features is four or higher, the returned topological
signatures are identical. Thus, one may conclude that the
addition of a fifth or sixth feature in the LIME explanations
has no effect on the overall topology of the explanations.
Likewise, by only including two or three features in LIME,
one may not be estimating appropriate explanations.

5. Conclusion
We present GALE, a topology-based framework to globally
summarize the outputs of local explanation methods. To do
so, we compute a topological skeleton that captures the re-
lationship between the explanations and model predictions.
Then, using this skeleton, we find its persistence diagram,
which represents the topological features in the explanation
space. Finally, we calculate the distance between the dif-
ferent explanations’ corresponding persistence diagrams to
derive a measure of similarity between explanations. GALE
(1) allows for easy comparison of heterogeneous local ex-
planations, (2) is resistant to outliers and variation, and (3)
can be used to optimize explanation method parameters.
While GALE sheds no light on what are the correct expla-
nations for a given prediction problem, it is a powerful and
simple tool to quantitatively compare heterogeneous local
explanations, compared to visual inspection or user studies.

Limitations. Although topological data analysis shows
promise in tackling challenges encountered in XAI applica-
tions, there are still several shortcomings which we plan to
address in the future. While we focus on binary classifica-
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tion with tabular data, which is a canonical machine learning
task, extending GALE to consider multiclass problems, as
well as text or image models, will be a key line of future
work. Additionally, although we did not evaluate GALE on
regression problems, the approach would be similar, except
for changing the lens function from the class predictions to
the regression output.
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Figure 6. Approximate Reeb graph of a point cloud. (a) Height function defined on a torus. Level sets at two different heights are
illustrated. (b) Reeb graph computed on the height function defined on the torus. (c) A point cloud sampled from the torus. (d) The
approximate Reeb graph computed using the Mapper algorithm when the height function is divided into 6 intervals as shown in (c).
(e) The persistence diagram computed using the Reeb graph.

Figure 7. Mapper output for SHAP explanations on a synthetic circles data set with 400 observations. Each quadrant highlights one unique
region of the graph, with the lower left of each quadrant showing the selected original data space (bottom) and explanation space (top).

A. Appendix
A.1. Reeb Graphs, Mapper Algorithm, and Persistence

Figure 6 shows an example of a Reeb graph and its corresponding Mapper output and persistence diagram. Figure 6(b)
shows the Reeb graph of the height function defined on the torus. In (c), we show points sampled from the torus. Assuming
the height function, this is divided into a set of 6 intervals, which is defined by the resolution parameter in Mapper. The
gain dictates the amount of overlap between adjacent intervals. Then, the connected components of the points that fall
into these intervals are used to generate the graph as shown in (d). In this work, we use Mapper to compute the graph in
(d). From the Mapper graph we can compute the persistence diagram (e). When plotting the Mapper graphs, we use the
Fruchterman-Reingold force-directed algorithm (Fruchterman & Reingold, 1991). Furthermore, we color nodes by the
average prediction of the observations contained in each node. In Figure 7, we can see how the nodes in the Mapper graph
correspond to points in both the explanation and original data space.

A.2. Comparing LIME, SHAP and Explainable Boosting Machines

Many local explainability methods are run post-hoc, meaning that first a model is trained and subsequently an explainability
method is applied to the model’s output to produce explanations. However, understanding the computed explanation space



GALE: Globally Assessing Local Explanations

Data Type Obervations Features LIME
SHAP

LIME
EBM

SHAP
EBM

Spirals Synthetic 100 2 0.00 0.11 0.11
Circles Synthetic 100 2 0.12 0.34 0.35
Corners Synthetic 100 2 0.08 0.15 0.15

Linearly Separable Synthetic 100 2 0.00 0.02 0.02
Toy Synthetic 300 6 0.00 0.03 0.03

Toy-Flip Synthetic 300 6 0.00 0.08 0.08
Toy-Interaction Synthetic 300 6 0.01 0.11 0.11
Breast Cancer Real 569 30 0.00 0.02 0.02

Diabetes Real 768 8 0.00 0.45 0.45
Sonar Real 208 60 0.00 0.00 0.00

Banknote Real 1,372 4 0.00 0.00 0.00
Ionosphere Real 351 34 0.00 0.01 0.01

Bank Marketing Real 4,119 19 0.01 0.44 0.44
German Credit Real 1,000 24 0.00 0.45 0.45

Table 2. Bottleneck distances between LIME, SHAP and EBM explanation topologies for synthetic and real world data. Intuitively, LIME
and SHAP generally have low-bottleneck distances, indicating that their explanation topologies are similar.

is oftentimes unintuitive. Generalized additive models, or GAMs, are a modeling approach whereby each feature contributes
additively to a model’s prediction. One desirable trait of this approach is that the feature contributions are easily interpretable,
and thus present a alternative to LIME and SHAP. Explainable Boosting Machine (EBM) are a popular interpretable
tree-based GAM from the interpret Python library (Nori et al., 2019). While we expect there to be consensus between
LIME and Kernel SHAP explanations, since the two methods are similar (Lundberg & Lee, 2017), it is unknown how the
explanations from these methods compare to those from EBMs.

We consider both synthetic and real world data sets for our experiments. For our synthetic data sets, we consider the
spirals, circles and corners data from Figure 3, one linearly-separable 2-dimensional data set, three “toy” data sets and the
Pima Indians diabetes (Smith et al., 1988) data set. In the toy data sets, we have six features {x1, ..., x6}, and the target
for observation i is determined by yi = xi,1 + xi,2 + xi,3 + xi,4 and each feature is independent from one another. In
“independent”, each feature is weighted equally and is independent from one another. In “flip”, yi = xi,1−xi,2+xi,3−xi,4.
Finally, in “interaction”, we add equal-weighted interactions in the form of yi =

∑4
k=1 xi,k +

∑4
j=2 10xi,1 · xi,j . For each

data set, we train a 2-layer feedforward neural network with 64 hidden units per layer, as well as an Explainable Boosting
Machine (EBM). We use the max number of features and a 50-sample neighborhood for our LIME explainer.

We show the bottleneck distances between the explanations from LIME, SHAP and EBM on each data set in Table 2. As
expected, we see strong consensus between LIME and SHAP explanations, particularly in our real world data sets. However,
we see varied consensus between EBM and LIME/SHAP explanations. Noticeably, there was more consensus among the
three explanation methods when the prediction problem was “easy”, such as in the linearly separable and toy synthetic data
sets. One possible explanation for the lack of consensus on some data sets is that EBMs, unlike LIME and SHAP, for a
k-dimensional data set, return explanations of size j, where j ≥ k. This is because EBMs include an interaction component,
where the interactions are detected by the EBM algorithm. We can enforce zero interactions when training, so that j = k in
the explanation output. However, by enforcing no feature interactions, the effect on explanation consensus was ambiguous,
which suggests that the topologies generated by GAMs and LIME/SHAP can differ significantly.

A.3. Stability of Explanations under Different Parameters

In Section 1 we mentioned that explanations may vary due to parameter choices or sampling variability. Figure 8 illustrates
a scenario where an input’s explanation is different after simply calculating LIME explanations multiple times with the same
parameters. While it is easy to observe the differences between multiple local explanations through the bar charts, such
analysis is only useful for analyzing the method for a single input. Such a visual approach becomes cumbersome when
applied to the entire data set. Moreover, it will be almost impossible to understand how stable the explanation method is for
that data. Visani et al. (2020) present two indices to measure the stability of LIME outputs.
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Figure 8. Five trials of LIME-generated explanations with the same parameters and inputs on sklearn’s 20 newsgroups dataset. The red
bars indicate the words that contribute to the prediction of “Christian” news, and green bars indicate the words that contribute to the
prediction of “theism” news. The lengths of the bars represent the feature importances. We show the top-10 features by feature attribution
magnitude.

A.4. Implementation

We use the implementations for Mapper, LIME and SHAP from the sklearn tda, lime and shap Python libraries,
respectively. For the Mapper clustering algorithm, we used the agglomerative clustering implementation from the sklearn
Python library. All predictive models were trained using their respective implementations from sklearn and we use
the EBM implementation from the interpret library (Nori et al., 2019). We use the DeepLIFT and Integrated Gra-
dients implementation from the captum Python library. We generated our synthetic data for Spirals, Circles, Corners,
Linearly Separable using sklearn and for Toy, Toy-Flip and Toy-Interaction, we used the methodology provided by
Barr et al. (2020). The real world data we used is available via the UCI Machine Learning Repository (Breast Cancer,
Diabetes, Sonar, Banknote, Ionosphere, Bank Marketing, German Credit). We plan on making a Python implementation of
GALE available to the public via PyPI.


